Epitaxial growth and stress relaxation of vapor-deposited Fe-Pd magnetic shape memory films

dc.bibliographicCitation.firstPage113054eng
dc.bibliographicCitation.journalTitleNew Journal of Physicseng
dc.bibliographicCitation.lastPage10332eng
dc.bibliographicCitation.volume11eng
dc.contributor.authorKühnemund, L.
dc.contributor.authorEdler, T.
dc.contributor.authorKock, I.
dc.contributor.authorSeibt, M.
dc.contributor.authorMayr, S.G.
dc.date.accessioned2020-08-12T05:34:52Z
dc.date.available2020-08-12T05:34:52Z
dc.date.issued2009
dc.description.abstractTo achieve maximum performance in microscale magnetic shape memory actuation devices epitaxial films several hundred nanometers thick are needed. Epitaxial films were grown on hot MgO substrates (500 °C and above) by e-beam evaporation. Structural properties and stress relaxation mechanisms were investigated by high-resolution transmission electron microscopy, in situ substrate curvature measurements and classical molecular dynamics (MD) simulations. The high misfit stress incorporated during Vollmer-Weber growth at the beginning was relaxed by partial or perfect dislocations depending on the substrate temperature. This relaxation allowed the avoidance of a stressinduced breakdown of epitaxy and no thickness limit for epitaxy was found. For substrate temperatures of 690 °C or above, the films grew in the fee austenite phase. Below this temperature, iron precipitates were formed. MD simulations showed how these precipitates influence the movements of partial dislocations, and can thereby explain the higher stress level observed in the experiments in the initial stage of growth for these films. © IOP Publishing Ltd and Deutsche Physikalische Gesellschaft.eng
dc.description.versionpublishedVersioneng
dc.identifier.urihttps://doi.org/10.34657/4124
dc.identifier.urihttps://oa.tib.eu/renate/handle/123456789/5495
dc.language.isoengeng
dc.publisherCollege Park, MD : Institute of Physics Publishingeng
dc.relation.doihttps://doi.org/10.1088/1367-2630/11/11/113054
dc.relation.issn1367-2630
dc.rights.licenseCC BY-NC-SA 3.0 Unportedeng
dc.rights.urihttps://creativecommons.org/licenses/by-nc-sa/3.0/eng
dc.subject.ddc530eng
dc.subject.otherAustenite phaseeng
dc.subject.otherClassical molecular dynamicseng
dc.subject.otherE beam evaporationeng
dc.subject.otherIn-situeng
dc.subject.otherInitial stageseng
dc.subject.otherMagnetic shape memoryeng
dc.subject.otherMD simulationeng
dc.subject.otherMgO substrateeng
dc.subject.otherMicro-scaleseng
dc.subject.otherMisfit stresseng
dc.subject.otherPartial dislocationseng
dc.subject.otherStress levelseng
dc.subject.otherStress-induced breakdowneng
dc.subject.otherSubstrate curvatureeng
dc.subject.otherSubstrate temperatureeng
dc.subject.otherEpitaxial filmseng
dc.subject.otherEpitaxial growtheng
dc.subject.otherHigh resolution transmission electron microscopyeng
dc.subject.otherMagnetic thick filmseng
dc.subject.otherMetallorganic vapor phase epitaxyeng
dc.subject.otherMolecular dynamicseng
dc.subject.otherPalladiumeng
dc.subject.otherResidual stresseseng
dc.subject.otherStress relaxationeng
dc.subject.otherVaporseng
dc.subject.otherSubstrateseng
dc.titleEpitaxial growth and stress relaxation of vapor-deposited Fe-Pd magnetic shape memory filmseng
dc.typeArticleeng
dc.typeTexteng
tib.accessRightsopenAccesseng
wgl.contributorIOMeng
wgl.subjectPhysikeng
wgl.typeZeitschriftenartikeleng
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Kühnemund et al 2009, Epitaxial growth and stress relaxation of vapor-deposited.pdf
Size:
3.51 MB
Format:
Adobe Portable Document Format
Description:
Collections