Spatial decay of the vorticity field of time-periodic viscous flow past a body
Date
Authors
Volume
Issue
Journal
Series Titel
Book Title
Publisher
Link to publishers version
Abstract
We study the asymptotic spatial behavior of the vorticity field associated to a time-periodic Navier-Stokes flow past a body in the class of weak solutions satisfying a Serrin-like condition. We show that outside the wake region the vorticity field decays pointwise at an exponential rate, uniformly in time. Moreover, decomposing it into its time-average over a period and a so-called purely periodic part, we prove that inside the wake region, the time-average has the same algebraic decay as that known for the associated steady-state problem, whereas the purely periodic part decays even faster, uniformly in time. This implies, in particular, that ``sufficiently far'' from the body, the time-periodic vorticity field behaves like the vorticity field of the corresponding steady-state problem.
Description
Keywords
Collections
License
Dieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden.