A novel engineered oxide buffer approach for fully lattice-matched SOI heterostructures

dc.bibliographicCitation.firstPage93005eng
dc.bibliographicCitation.lastPage5901eng
dc.bibliographicCitation.volume12eng
dc.contributor.authorGiussani, A.
dc.contributor.authorZaumseil, P.
dc.contributor.authorSeifarth, O.
dc.contributor.authorStorck, P.
dc.contributor.authorSchroeder, T.
dc.date.accessioned2020-08-12T05:34:51Z
dc.date.available2020-08-12T05:34:51Z
dc.date.issued2010
dc.description.abstractEpitaxial (epi) oxides on silicon can be used to integrate novel device concepts on the canonical Si platform, including functional oxides, e.g. multiferroics, as well as alternative semiconductor approaches. For all these applications, the quality of the oxide heterostructure is a key figure of merit. In this paper, it is shown that, by co-evaporating Y2O3 and Pr2O3 powder materials, perfectly lattice-matched PrYO3(111) epilayers with bixbyite structure can be grown on Si(111) substrates. A high-resolution x-ray diffraction analysis demonstrates that the mixed oxide epi-films are single crystalline and type B oriented. Si epitaxial overgrowth of the PrYO3(111)/Si(111) support system results in flat, continuous and fully lattice-matched epi-Si(111)/PrYO3(111)/Si(111) silicon-on-insulator heterostructures. Raman spectroscopy proves the strain-free nature of the epi-Si films. A Williamson-Hall analysis of the mixed oxide layer highlights the existence of structural defects in the buffer, which can be explained by the thermal expansion coefficients of Si and PrYO3. © IOP Publishing Ltd and Deutsche Physikalische Gesellschaft.eng
dc.description.versionpublishedVersioneng
dc.identifier.urihttps://doi.org/10.34657/4116
dc.identifier.urihttps://oa.tib.eu/renate/handle/123456789/5487
dc.language.isoengeng
dc.publisherCollege Park, MD : Institute of Physics Publishingeng
dc.relation.doihttps://doi.org/10.1088/1367-2630/12/9/093005
dc.relation.ispartofseriesNew Journal of Physics 12 (2010)eng
dc.relation.issn1367-2630
dc.rights.licenseCC BY-NC-SA 3.0 Unportedeng
dc.rights.urihttps://creativecommons.org/licenses/by-nc-sa/3.0/eng
dc.subjectBixbyite structureeng
dc.subjectEpitaxial overgrowtheng
dc.subjectFigure of meriteng
dc.subjectFunctional oxideseng
dc.subjectHeterostructureseng
dc.subjectHigh resolution X ray diffractioneng
dc.subjectLattice-matchedeng
dc.subjectMixed oxideeng
dc.subjectMultiferroicseng
dc.subjectNovel deviceseng
dc.subjectOxide buffereng
dc.subjectPowder materialeng
dc.subjectSi (1 1 1)eng
dc.subjectSi filmseng
dc.subjectSi(111) substrateeng
dc.subjectSilicon on insulatoreng
dc.subjectSingle-crystallineeng
dc.subjectStrain-freeeng
dc.subjectStructural defecteng
dc.subjectSupport systemseng
dc.subjectThermal expansion coefficientseng
dc.subjectWilliamson-Halleng
dc.subjectCrystalseng
dc.subjectEpitaxial growtheng
dc.subjectHeterojunctionseng
dc.subjectOxide filmseng
dc.subjectRaman spectroscopyeng
dc.subjectSemiconducting siliconeng
dc.subjectThermal expansioneng
dc.subjectX ray diffractioneng
dc.subjectX ray diffraction analysiseng
dc.subjectSemiconducting silicon compoundseng
dc.subject.ddc530eng
dc.titleA novel engineered oxide buffer approach for fully lattice-matched SOI heterostructureseng
dc.typearticleeng
dc.typeTexteng
dcterms.bibliographicCitation.journalTitleNew Journal of Physicseng
tib.accessRightsopenAccesseng
wgl.contributorIHPeng
wgl.subjectPhysikeng
wgl.typeZeitschriftenartikeleng
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Giussani et al 2010, A novel engineered oxide buffer approach.pdf
Size:
1.48 MB
Format:
Adobe Portable Document Format
Description:
Collections