A novel engineered oxide buffer approach for fully lattice-matched SOI heterostructures

dc.bibliographicCitation.firstPage93005eng
dc.bibliographicCitation.journalTitleNew Journal of Physicseng
dc.bibliographicCitation.lastPage5901eng
dc.bibliographicCitation.volume12eng
dc.contributor.authorGiussani, A.
dc.contributor.authorZaumseil, P.
dc.contributor.authorSeifarth, O.
dc.contributor.authorStorck, P.
dc.contributor.authorSchroeder, T.
dc.date.accessioned2020-08-12T05:34:51Z
dc.date.available2020-08-12T05:34:51Z
dc.date.issued2010
dc.description.abstractEpitaxial (epi) oxides on silicon can be used to integrate novel device concepts on the canonical Si platform, including functional oxides, e.g. multiferroics, as well as alternative semiconductor approaches. For all these applications, the quality of the oxide heterostructure is a key figure of merit. In this paper, it is shown that, by co-evaporating Y2O3 and Pr2O3 powder materials, perfectly lattice-matched PrYO3(111) epilayers with bixbyite structure can be grown on Si(111) substrates. A high-resolution x-ray diffraction analysis demonstrates that the mixed oxide epi-films are single crystalline and type B oriented. Si epitaxial overgrowth of the PrYO3(111)/Si(111) support system results in flat, continuous and fully lattice-matched epi-Si(111)/PrYO3(111)/Si(111) silicon-on-insulator heterostructures. Raman spectroscopy proves the strain-free nature of the epi-Si films. A Williamson-Hall analysis of the mixed oxide layer highlights the existence of structural defects in the buffer, which can be explained by the thermal expansion coefficients of Si and PrYO3. © IOP Publishing Ltd and Deutsche Physikalische Gesellschaft.eng
dc.description.versionpublishedVersioneng
dc.identifier.urihttps://doi.org/10.34657/4116
dc.identifier.urihttps://oa.tib.eu/renate/handle/123456789/5487
dc.language.isoengeng
dc.publisherCollege Park, MD : Institute of Physics Publishingeng
dc.relation.doihttps://doi.org/10.1088/1367-2630/12/9/093005
dc.relation.issn1367-2630
dc.rights.licenseCC BY-NC-SA 3.0 Unportedeng
dc.rights.urihttps://creativecommons.org/licenses/by-nc-sa/3.0/eng
dc.subject.ddc530eng
dc.subject.otherBixbyite structureeng
dc.subject.otherEpitaxial overgrowtheng
dc.subject.otherFigure of meriteng
dc.subject.otherFunctional oxideseng
dc.subject.otherHeterostructureseng
dc.subject.otherHigh resolution X ray diffractioneng
dc.subject.otherLattice-matchedeng
dc.subject.otherMixed oxideeng
dc.subject.otherMultiferroicseng
dc.subject.otherNovel deviceseng
dc.subject.otherOxide buffereng
dc.subject.otherPowder materialeng
dc.subject.otherSi (1 1 1)eng
dc.subject.otherSi filmseng
dc.subject.otherSi(111) substrateeng
dc.subject.otherSilicon on insulatoreng
dc.subject.otherSingle-crystallineeng
dc.subject.otherStrain-freeeng
dc.subject.otherStructural defecteng
dc.subject.otherSupport systemseng
dc.subject.otherThermal expansion coefficientseng
dc.subject.otherWilliamson-Halleng
dc.subject.otherCrystalseng
dc.subject.otherEpitaxial growtheng
dc.subject.otherHeterojunctionseng
dc.subject.otherOxide filmseng
dc.subject.otherRaman spectroscopyeng
dc.subject.otherSemiconducting siliconeng
dc.subject.otherThermal expansioneng
dc.subject.otherX ray diffractioneng
dc.subject.otherX ray diffraction analysiseng
dc.subject.otherSemiconducting silicon compoundseng
dc.titleA novel engineered oxide buffer approach for fully lattice-matched SOI heterostructureseng
dc.typeArticleeng
dc.typeTexteng
tib.accessRightsopenAccesseng
wgl.contributorIHPeng
wgl.subjectPhysikeng
wgl.typeZeitschriftenartikeleng
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Giussani et al 2010, A novel engineered oxide buffer approach.pdf
Size:
1.48 MB
Format:
Adobe Portable Document Format
Description:
Collections