Global-in-time solvability of thermodynamically motivated parabolic systems

Loading...
Thumbnail Image

Date

Volume

2455

Issue

Journal

Series Titel

WIAS Preprints

Book Title

Publisher

Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik

Abstract

In this paper, doubly non linear parabolic systems in divergence form are investigated form the point of view of their global-in-time weak solvability. The non-linearity under the time derivative is given by the gradient of a strictly convex, globally Lipschitz continuous potential, multiplied by a position-dependent weight. This weight admits singular values. The flux under the spatial divergence is also of monotone gradient type, but it is not restricted to polynomial growth. It is assumed that the elliptic operator generates some equi-coercivity on the spatial derivatives of the unknowns. The paper introduces some original techniques to deal with the case of nonlinear purely Neumann boundary conditions. In this respect, it generalises or complements the results by Alt and Luckhaus (1983) and Alt (2012). A field of application of the theory are the multi species diffusion systems driven by entropy.

Description

Keywords

License

This document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties.
Dieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden.