A discontinuous skeletal method for the viscosity-dependent Stokes problem
dc.bibliographicCitation.seriesTitle | WIAS Preprints | eng |
dc.bibliographicCitation.volume | 2195 | |
dc.contributor.author | Ern, Alexandre | |
dc.contributor.author | Di Pietro, Daniele | |
dc.contributor.author | Linke, Alexander | |
dc.contributor.author | Schieweck, Friedhelm | |
dc.date.accessioned | 2016-12-13T10:46:53Z | |
dc.date.available | 2019-06-28T08:26:51Z | |
dc.date.issued | 2015 | |
dc.description.abstract | We devise and analyze arbitrary-order nonconforming methods for the discretization of the viscosity-dependent Stokes equations on simplicial meshes. We keep track explicitly of the viscosity and aim at pressure-robust schemes that can deal with the practically relevant case of body forces with large curl-free part in a way that the discrete velocity error is not spoiled by large pressures. The method is inspired from the recent Hybrid High-Order (HHO) methods for linear elasticity. After elimination of the auxiliary variables by static condensation, the linear system to be solved involves only discrete face-based velocities, which are polynomials of degree k ≥ 0, and cell-wise constant pressures. Our main result is a pressure-independent energy-error estimate on the velocity of order (k+1). The main ingredient to achieve pressure-independence is the use of a divergencepreserving velocity econstruction operator in the discretization of the body forces. We also prove an L2-pressure estimate of order (k+1) and an L2-velocity estimate of order (k+2), the latter under elliptic regularity. The local mass and momentum conservation properties of the discretization are also established. Finally, two- and three-dimensional numerical results are presented to support the analysis. | eng |
dc.description.version | publishedVersion | eng |
dc.format | application/pdf | |
dc.identifier.issn | 2198-5855 | |
dc.identifier.uri | https://doi.org/10.34657/1782 | |
dc.identifier.uri | https://oa.tib.eu/renate/handle/123456789/3501 | |
dc.language.iso | eng | eng |
dc.publisher | Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik | eng |
dc.relation.issn | 0946-8633 | eng |
dc.rights.license | This document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties. | eng |
dc.rights.license | Dieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden. | ger |
dc.subject.ddc | 510 | eng |
dc.subject.other | Stokes problem | eng |
dc.subject.other | mixed methods | eng |
dc.subject.other | curl-free forces | eng |
dc.subject.other | higher-order reconstruction | eng |
dc.subject.other | superconvergence | eng |
dc.subject.other | hybrid discontinuous Galerkin method | eng |
dc.subject.other | static condensation. | eng |
dc.title | A discontinuous skeletal method for the viscosity-dependent Stokes problem | eng |
dc.type | Report | eng |
dc.type | Text | eng |
tib.accessRights | openAccess | eng |
wgl.contributor | WIAS | eng |
wgl.subject | Mathematik | eng |
wgl.type | Report / Forschungsbericht / Arbeitspapier | eng |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- 869393316.pdf
- Size:
- 873.09 KB
- Format:
- Adobe Portable Document Format
- Description: