Nanorattles with tailored electric field enhancement

dc.bibliographicCitation.firstPage9376
dc.bibliographicCitation.issue27
dc.bibliographicCitation.lastPage9385
dc.bibliographicCitation.volume9
dc.contributor.authorSchnepf, Max J.
dc.contributor.authorMayer, Martin
dc.contributor.authorKuttner, Christian
dc.contributor.authorTebbe, Moritz
dc.contributor.authorWolf, Daniel
dc.contributor.authorDulle, Martin
dc.contributor.authorAltantzis, Thomas
dc.contributor.authorFormanek, Petr
dc.contributor.authorFörster, Stephan
dc.contributor.authorBals, Sara
dc.contributor.authorKönig, Tobias A. F.
dc.contributor.authorFery, Andreas
dc.date.accessioned2023-04-27T11:59:29Z
dc.date.available2023-04-27T11:59:29Z
dc.date.issued2017
dc.description.abstractNanorattles are metallic core-shell particles with core and shell separated by a dielectric spacer. These nanorattles have been identified as a promising class of nanoparticles, due to their extraordinary high electric-field enhancement inside the cavity. Limiting factors are reproducibility and loss of axial symmetry owing to the movable metal core; movement of the core results in fluctuation of the nanocavity dimensions and commensurate variations in enhancement factor. We present a novel synthetic approach for the robust fixation of the central gold rod within a well-defined box, which results in an axisymmetric nanorattle. We determine the structure of the resulting axisymmetric nanorattles by advanced transmission electron microscopy (TEM) and small-angle X-ray scattering (SAXS). Optical absorption and scattering cross-sections obtained from UV-vis-NIR spectroscopy quantitatively agree with finite-difference time-domain (FDTD) simulations based on the structural model derived from SAXS. The predictions of high and homogenous field enhancement are evidenced by scanning TEM electron energy loss spectroscopy (STEM-EELS) measurement on single-particle level. Thus, comprehensive understanding of structural and optical properties is achieved for this class of nanoparticles, paving the way for photonic applications where a defined and robust unit cell is crucial.eng
dc.description.versionpublishedVersioneng
dc.identifier.urihttps://oa.tib.eu/renate/handle/123456789/12113
dc.identifier.urihttp://dx.doi.org/10.34657/11147
dc.language.isoeng
dc.publisherCambridge : RSC Publ.
dc.relation.doihttps://doi.org/10.1039/c7nr02952g
dc.relation.essn2040-3372
dc.relation.ispartofseriesNanoscale 9 (2017), Nr. 27eng
dc.relation.issn2040-3364
dc.rights.licenseCC BY-NC 3.0 Unported
dc.rights.urihttps://creativecommons.org/licenses/by-nc/3.0
dc.subjectElectric fieldseng
dc.subjectElectromagnetic wave scatteringeng
dc.subjectEnergy dissipationeng
dc.subjectFinite difference time domain methodeng
dc.subjectHigh resolution transmission electron microscopyeng
dc.subjectNanoparticleseng
dc.subjectNear infrared spectroscopyeng
dc.subjectOptical propertieseng
dc.subjectTransmission electron microscopyeng
dc.subjectX ray scatteringeng
dc.subject.ddc600
dc.titleNanorattles with tailored electric field enhancementeng
dc.typearticle
dc.typeText
dcterms.bibliographicCitation.journalTitleNanoscale
tib.accessRightsopenAccess
wgl.contributorIPF
wgl.subjectChemieger
wgl.typeZeitschriftenartikelger
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
c7nr02952g.pdf
Size:
3.73 MB
Format:
Adobe Portable Document Format
Description:
Collections