Subnanometer Control of the Heteroepitaxial Growth of Multimicrometer-Thick Ge /(Si, Ge) Quantum Cascade Structures

dc.bibliographicCitation.firstPage14011
dc.bibliographicCitation.issue1
dc.bibliographicCitation.journalTitlePhysical review appliedeng
dc.bibliographicCitation.volume19
dc.contributor.authorTalamas Simola, Enrico
dc.contributor.authorMontanari, Michele
dc.contributor.authorCorley-Wiciak, Cedric
dc.contributor.authorDi Gaspare, Luciana
dc.contributor.authorPersichetti, Luca
dc.contributor.authorZöllner, Marvin H.
dc.contributor.authorSchubert, Markus A.
dc.contributor.authorVenanzi, Tommaso
dc.contributor.authorTrouche, Marina Cagnon
dc.contributor.authorOrtolani, Michele
dc.contributor.authorMattioli, Francesco
dc.contributor.authorSfuncia, Gianfranco
dc.contributor.authorNicotra, Giuseppe
dc.contributor.authorCapellini, Giovanni
dc.contributor.authorVirgilio, Michele
dc.contributor.authorDe Seta, Monica
dc.date.accessioned2023-05-25T10:24:59Z
dc.date.available2023-05-25T10:24:59Z
dc.date.issued2023
dc.description.abstractThe fabrication of complex low-dimensional quantum devices requires the control of the heteroepitaxial growth at the subnanometer scale. This is particularly challenging when the total thickness of stacked layers of device-active material becomes extremely large and exceeds the multi-μm limit, as in the case of quantum cascade structures. Here, we use the ultrahigh-vacuum chemical vapor deposition technique for the growth of multi-μm-thick stacks of high Ge content strain-balanced Ge/SiGe tunneling heterostructures on Si substrates, designed to serve as the active material in a THz quantum cascade laser. By combining thorough structural investigation with THz spectroscopy absorption experiments and numerical simulations we show that the optimized deposition process can produce state-of-the-art threading dislocation density, ultrasharp interfaces, control of dopant atom position at the nanoscale, and reproducibility within 1% of the layer thickness and composition within the whole multilayer. We show that by using ultrahigh-vacuum chemical vapor deposition one achieves simultaneously a control of the epitaxy down to the sub-nm scale typical of the molecular beam epitaxy, and the high growth rate and technological relevance of chemical vapor deposition. Thus, this technique is a key enabler for the deposition of integrated THz devices and other complex quantum structures based on the Ge/SiGe material system.eng
dc.description.versionpublishedVersioneng
dc.identifier.urihttps://oa.tib.eu/renate/handle/123456789/12212
dc.identifier.urihttp://dx.doi.org/10.34657/11244
dc.language.isoeng
dc.publisherCollege Park, Md. [u.a.] : American Physical Society
dc.relation.doihttps://doi.org/10.1103/PhysRevApplied.19.014011
dc.relation.essn2331-7019
dc.rights.licenseCC BY 4.0 Unported
dc.rights.urihttps://creativecommons.org/licenses/by/4.0
dc.subject.ddc530
dc.subject.otherActive materialeng
dc.subject.otherGe/SiGeeng
dc.subject.otherLow dimensionaleng
dc.subject.otherQuantum cascade structureseng
dc.subject.otherQuantum deviceeng
dc.subject.otherSi/Geeng
dc.subject.otherStacked layereng
dc.subject.otherSub nanometerseng
dc.subject.otherUltra high vacuum chemical vapor depositioneng
dc.subject.otherVapor-deposition techniqueseng
dc.titleSubnanometer Control of the Heteroepitaxial Growth of Multimicrometer-Thick Ge /(Si, Ge) Quantum Cascade Structureseng
dc.typeArticleeng
dc.typeTexteng
tib.accessRightsopenAccess
wgl.contributorIHP
wgl.subjectPhysikger
wgl.typeZeitschriftenartikelger
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
PhysRevApplied-19-014011.pdf
Size:
5.89 MB
Format:
Adobe Portable Document Format
Description:
Collections