Hybridized Guided-Mode Resonances via Colloidal Plasmonic Self-Assembled Grating

dc.bibliographicCitation.firstPage13752eng
dc.bibliographicCitation.issue14eng
dc.bibliographicCitation.journalTitleACS applied materials & interfaceseng
dc.bibliographicCitation.lastPage13760eng
dc.bibliographicCitation.volume11eng
dc.contributor.authorSarkar, Swagato
dc.contributor.authorGupta, Vaibhav
dc.contributor.authorKumar, Mohit
dc.contributor.authorSchubert, Jonas
dc.contributor.authorProbst, Patrick T.
dc.contributor.authorJoseph, Joby
dc.contributor.authorKönig, Tobias A.F.
dc.date.accessioned2021-09-07T09:21:32Z
dc.date.available2021-09-07T09:21:32Z
dc.date.issued2019
dc.description.abstractFor many photonic applications, it is important to confine light of a specific wavelength at a certain volume of interest at low losses. So far, it is only possible to use the polarized light perpendicular to the solid grid lines to excite waveguide-plasmon polaritons in a waveguide-supported hybrid structure. In our work, we use a plasmonic grating fabricated by colloidal self-assembly and an ultrathin injection layer to guide the resonant modes selectively. We use gold nanoparticles self-assembled in a linear template on a titanium dioxide (TiO 2 ) layer to study the dispersion relation with conventional ultraviolet-visible-near-infrared spectroscopic methods. Supported with finite-difference in time-domain simulations, we identify the optical band gaps as hybridized modes: plasmonic and photonic resonances. Compared to metallic grids, the observation range of hybridized guided modes can now be extended to modes along the nanoparticle chain lines. With future applications in energy conversion and optical filters employing these cost-efficient and upscalable directed self-assembly methods, we discuss also the application in refractive index sensing of the particle-based hybridized guided modes. Copyright © 2019 American Chemical Society.eng
dc.description.versionpublishedVersioneng
dc.identifier.urihttps://oa.tib.eu/renate/handle/123456789/6730
dc.identifier.urihttps://doi.org/10.34657/5777
dc.language.isoengeng
dc.publisherWashington, DC : Soc.eng
dc.relation.doihttps://doi.org/10.1021/acsami.8b20535
dc.relation.essn1944-8252
dc.relation.issn1944-8244
dc.rights.licenseCC BY-NC-ND 4.0 Unportedeng
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/eng
dc.subject.ddc540eng
dc.subject.ddc600eng
dc.subject.othergratingeng
dc.subject.otherguided-mode resonanceeng
dc.subject.otherlocalized surface plasmon resonanceeng
dc.subject.otherplasmonic hybridizationeng
dc.subject.othertemplate-assisted colloidal self-assemblyeng
dc.titleHybridized Guided-Mode Resonances via Colloidal Plasmonic Self-Assembled Gratingeng
dc.typeArticleeng
dc.typeTexteng
tib.accessRightsopenAccesseng
wgl.contributorIPFeng
wgl.subjectChemieeng
wgl.typeZeitschriftenartikeleng
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Hybridized Guided-Mode Resonances via Colloidal Plasmonic Self-Assembled Grating.pdf
Size:
4.93 MB
Format:
Adobe Portable Document Format
Description:
Collections