Direct and inverse elastic scattering problems for diffraction gratings

Loading...
Thumbnail Image

Date

Volume

1719

Issue

Journal

Series Titel

WIAS Preprints

Book Title

Publisher

Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik

Link to publishers version

Abstract

This paper is concerned with the direct and inverse scattering of time-harmonic plane elastic waves by unbounded periodic structures (diffraction gratings). We present a variational approach to the forward scattering problems with Lipschitz grating profiles and give a survey of recent uniqueness and existence results. We also report on recent global uniqueness results within the class of piecewise linear grating profiles for the corresponding inverse elastic scattering problems. Moreover, a discrete Galerkin method is presented to efficiently approximate solutions of direct scattering problems via an integral equation approach. Finally, an optimization method for solving the inverse problem of recovering a 2D periodic structure from scattered elastic waves measured above the structure is discussed.

Description

Keywords

License

This document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties.
Dieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden.