Microstructure and elastic deformation behavior of β-type Ti-29Nb-13Ta-4.6Zr with promising mechanical properties for stent applications

dc.bibliographicCitation.firstPage3852eng
dc.bibliographicCitation.issue5eng
dc.bibliographicCitation.journalTitleJournal of Materials Research and Technologyeng
dc.bibliographicCitation.volume8eng
dc.contributor.authorPlaine, A.H.
dc.contributor.authorSilva, M.R.D.
dc.contributor.authorBolfarini, C.
dc.date.accessioned2020-07-18T06:12:37Z
dc.date.available2020-07-18T06:12:37Z
dc.date.issued2019
dc.description.abstractIn this paper, an attempt was made to combine theoretical composition design and thermo-mechanical treatments to produce a metastable β-type titanium alloy with mechanical compatibility for self-expandable stent applications. Metastable β-type Ti-29Nb-13Ta-4.6â»Zr (wt.%) thin-wires with an elastic modulus of 46â»GPa and a yield strength of 920â»MPa were successfully fabricated by cold rolling and low temperature aging. This combination of high yield strength and comparatively low elastic modulus resulted in enhanced elastic recoverable strain of 1.9%, which is much higher than that of the conventional metallic stent materials. The microstructure responsible for the much sought-after mechanical properties was observed to be mainly consisted of a homogeneous distribution of nanometer-sized α-precipitates in a β-phase matrix obtained via a spinodal decomposition of the pre-existed α″-martensite phase through α″â»→â»α″ leanâ»+â»α″ richâ»→â»αâ»+â»β. The α-precipitates increase the strength of the material by hindering the motion of dislocations (spinodal hardening) while the β-matrix with relatively low content of β-stabilizers gives rise to the observed low elastic modulus. More broadly, these findings could be extended to developing advanced metastable β-type titanium alloys for implant and other engineering applications.eng
dc.description.fondsLeibniz_Fonds
dc.description.versionpublishedVersioneng
dc.identifier.urihttps://doi.org/10.34657/3605
dc.identifier.urihttps://oa.tib.eu/renate/handle/123456789/4976
dc.language.isoengeng
dc.publisherAmsterdam : Elsevier B.V.eng
dc.relation.doihttps://doi.org/10.1016/j.jmrt.2019.06.047
dc.relation.issn2238-7854
dc.rights.licenseCC BY-NC-ND 4.0 Unportedeng
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/eng
dc.subject.ddc620eng
dc.subject.otherElastic deformation behavioreng
dc.subject.otherMetastable titanium alloyeng
dc.subject.otherPhase precipitationeng
dc.subject.otherThermo-Mechanical treatmentseng
dc.subject.otherCold rollingeng
dc.subject.otherElastic deformationeng
dc.subject.otherElastic modulieng
dc.subject.otherMetal implantseng
dc.subject.otherMicrostructureeng
dc.subject.otherNiobium alloyseng
dc.subject.otherPrecipitation (chemical)eng
dc.subject.otherRapid thermal annealingeng
dc.subject.otherSpinodal decompositioneng
dc.subject.otherStentseng
dc.subject.otherTantalum alloyseng
dc.subject.otherTemperatureeng
dc.subject.otherThermomechanical treatmenteng
dc.subject.otherZircaloyeng
dc.subject.otherBeta-type titanium alloyseng
dc.subject.otherDeformation behavioreng
dc.subject.otherEngineering applicationseng
dc.subject.otherHomogeneous distributioneng
dc.subject.otherLow elastic moduluseng
dc.subject.otherLow temperature agingeng
dc.subject.otherPhase precipitationseng
dc.subject.otherTi-29Nb-13Ta-4.6Zreng
dc.subject.otherTitanium alloyseng
dc.titleMicrostructure and elastic deformation behavior of β-type Ti-29Nb-13Ta-4.6Zr with promising mechanical properties for stent applicationseng
dc.typeArticleeng
dc.typeTexteng
tib.accessRightsopenAccesseng
wgl.contributorIFWDeng
wgl.subjectIngenieurwissenschafteneng
wgl.typeZeitschriftenartikeleng
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Plaine et al 2019, Microstructure and elastic deformation behavior.pdf
Size:
1.93 MB
Format:
Adobe Portable Document Format
Description: