Dynamic probabilistic constraints under continuous random distributions

dc.bibliographicCitation.seriesTitleWIAS Preprintseng
dc.bibliographicCitation.volume2783
dc.contributor.authorGonzález Grandón, Tatiana
dc.contributor.authorHenrion, René
dc.contributor.authorPérez-Aros, Pedro
dc.date.accessioned2022-06-30T13:24:02Z
dc.date.available2022-06-30T13:24:02Z
dc.date.issued2020
dc.description.abstractThe paper investigates analytical properties of dynamic probabilistic constraints (chance constraints). The underlying random distribution is supposed to be continuous. In the first part, a general multistage model with decision rules depending on past observations of the random process is analyzed. Basic properties like (weak sequential) (semi-) continuity of the probability function or existence of solutions are studied. It turns out that the results differ significantly according to whether decision rules are embedded into Lebesgue or Sobolev spaces. In the second part, the simplest meaningful two-stage model with decision rules from L 2 is investigated. More specific properties like Lipschitz continuity and differentiability of the probability function are considered. Explicitly verifiable conditions for these properties are provided along with explicit gradient formulae in the Gaussian case. The application of such formulae in the context of necessary optimality conditions is discussed and a concrete identification of solutions presented.eng
dc.description.versionpublishedVersioneng
dc.identifier.urihttps://oa.tib.eu/renate/handle/123456789/9433
dc.identifier.urihttps://doi.org/10.34657/8471
dc.language.isoeng
dc.publisherBerlin : Weierstraß-Institut für Angewandte Analysis und Stochastik
dc.relation.doihttps://doi.org/10.20347/WIAS.PREPRINT.2783
dc.relation.issn2198-5855
dc.rights.licenseThis document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties.eng
dc.rights.licenseDieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden.ger
dc.subject.ddc510
dc.subject.otherDynamic probabilistic constraintseng
dc.subject.otherchance constraintseng
dc.subject.othercontinuous distributionseng
dc.subject.otherdecision ruleseng
dc.subject.otherstochastic programmingeng
dc.titleDynamic probabilistic constraints under continuous random distributionseng
dc.typeReporteng
dc.typeTexteng
dcterms.extent27 S.
tib.accessRightsopenAccess
wgl.contributorWIAS
wgl.subjectMathematik
wgl.typeReport / Forschungsbericht / Arbeitspapier
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
wias_preprints_2783.pdf
Size:
352.79 KB
Format:
Adobe Portable Document Format
Description: