Coercivity for elliptic operators and positivity of solutions on Lipschitz domains

dc.bibliographicCitation.seriesTitleWIAS Preprintseng
dc.bibliographicCitation.volume1473
dc.contributor.authorHaller-Dintelmann, Robert
dc.contributor.authorRehberg, Joachim
dc.date.accessioned2016-03-24T17:38:35Z
dc.date.available2019-06-28T08:04:52Z
dc.date.issued2009
dc.description.abstractWe show that usual second order operators in divergence form satisfy coercivity on Lipschitz domains if they are either complemented with homogeneous Dirichlet boundary conditions on a set of non-zero boundary measure or if a suitable Robin boundary condition is posed. Moreover, we prove the positivity of solutions in a general, abstract setting, provided that the right hand side is a positive functional. Finally, positive elements from $W^-1,2$ are identified as positive measureseng
dc.description.versionpublishedVersioneng
dc.formatapplication/pdf
dc.identifier.issn0946-8633
dc.identifier.urihttps://doi.org/10.34657/2137
dc.identifier.urihttps://oa.tib.eu/renate/handle/123456789/2240
dc.language.isoengeng
dc.publisherBerlin : Weierstraß-Institut für Angewandte Analysis und Stochastikeng
dc.relation.issn0946-8633eng
dc.rights.licenseThis document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties.eng
dc.rights.licenseDieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden.ger
dc.subject.ddc510eng
dc.subject.otherCoercivityeng
dc.subject.othermixed boundary problemseng
dc.subject.otherpositivity of solutionseng
dc.titleCoercivity for elliptic operators and positivity of solutions on Lipschitz domainseng
dc.typeReporteng
dc.typeTexteng
tib.accessRightsopenAccesseng
wgl.contributorWIASeng
wgl.subjectMathematikeng
wgl.typeReport / Forschungsbericht / Arbeitspapiereng
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
664526489.pdf
Size:
222.42 KB
Format:
Adobe Portable Document Format
Description: