Coercivity for elliptic operators and positivity of solutions on Lipschitz domains
dc.bibliographicCitation.seriesTitle | WIAS Preprints | eng |
dc.bibliographicCitation.volume | 1473 | |
dc.contributor.author | Haller-Dintelmann, Robert | |
dc.contributor.author | Rehberg, Joachim | |
dc.date.accessioned | 2016-03-24T17:38:35Z | |
dc.date.available | 2019-06-28T08:04:52Z | |
dc.date.issued | 2009 | |
dc.description.abstract | We show that usual second order operators in divergence form satisfy coercivity on Lipschitz domains if they are either complemented with homogeneous Dirichlet boundary conditions on a set of non-zero boundary measure or if a suitable Robin boundary condition is posed. Moreover, we prove the positivity of solutions in a general, abstract setting, provided that the right hand side is a positive functional. Finally, positive elements from $W^-1,2$ are identified as positive measures | eng |
dc.description.version | publishedVersion | eng |
dc.format | application/pdf | |
dc.identifier.issn | 0946-8633 | |
dc.identifier.uri | https://doi.org/10.34657/2137 | |
dc.identifier.uri | https://oa.tib.eu/renate/handle/123456789/2240 | |
dc.language.iso | eng | eng |
dc.publisher | Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik | eng |
dc.relation.issn | 0946-8633 | eng |
dc.rights.license | This document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties. | eng |
dc.rights.license | Dieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden. | ger |
dc.subject.ddc | 510 | eng |
dc.subject.other | Coercivity | eng |
dc.subject.other | mixed boundary problems | eng |
dc.subject.other | positivity of solutions | eng |
dc.title | Coercivity for elliptic operators and positivity of solutions on Lipschitz domains | eng |
dc.type | Report | eng |
dc.type | Text | eng |
tib.accessRights | openAccess | eng |
wgl.contributor | WIAS | eng |
wgl.subject | Mathematik | eng |
wgl.type | Report / Forschungsbericht / Arbeitspapier | eng |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- 664526489.pdf
- Size:
- 222.42 KB
- Format:
- Adobe Portable Document Format
- Description: