Plasma glow discharge as a tool for surface modification of catalytic solid oxides: A case study of La0.6Sr0.4Co0.2Fe0.8O3-δ perovskite
Date
Volume
Issue
Journal
Series Titel
Book Title
Publisher
Link to publishers version
Abstract
Performance of solid oxide fuel cells (SOFCs) is hindered by the sluggish catalytic kinetics on the surfaces of cathode materials. It has recently been reported that improved electrochemical activity of perovskite oxides can be obtained with the cations or the oxides of some metallic elements at the surface. Here, we used a cost-effective plasma glow charge method as a generic tool to deposit nano-size metallic particles onto the surface of SOFC materials. Ni nano-scale patterns were successfully coated on the La0.6Sr0.4Co0.2Fe0.8O3-δ (LSCF) surface. The microstructure could be well controlled. The kinetics of oxygen exchange on the modified LSCF surface was promoted significantly, confirmed by electrical conductivity relaxation (ECR) measurement.