Deriving amplitude equations via evolutionary [Gamma]-convergence
Date
Authors
Volume
Issue
Journal
Series Titel
Book Title
Publisher
Link to publishers version
Abstract
We discuss the justification of the GinzburgLandau equation with real coefficients as an amplitude equation for the weakly unstable one-dimensional SwiftHohenberg equation. In contrast to classical justification approaches we employ the method of evolutionary [Gamma]-convergence by reformulating both equation as gradient systems. Using a suitable linear transformation we show [Gamma]-convergence of the associated energies in suitable function spaces. The limit passage of the time-dependent problem relies on the recent theory of evolutionary variational inequalities for families of uniformly convex functionals as developed by Daneri and Savare 2010. In the case of a cubic energy it suffices that the initial conditions converge strongly in L2, while for the case of a quadratic nonlinearity we need to impose weak convergence in H1. However, we do not need wellpreparedness of the initial conditions.
Description
Keywords
Collections
License
Dieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden.