The square root problem for second order, divergence form operators with mixed boundary conditions on Lp

No Thumbnail Available
Date
2012
Volume
Issue
Journal
Series Titel
Book Title
Publisher
Cambridge : arXiv
Link to publishers version
Abstract

We show that, under general conditions, the operator (−∇⋅μ∇+1)1/2 with mixed boundary conditions provides a topological isomorphism between W1,pD(Ω) and Lp(Ω), for p∈]1,2[ if one presupposes that this isomorphism holds true for p=2. The domain Ω is assumed to be bounded, the Dirichlet part D of the boundary has to satisfy the well-known Ahlfors-David condition, whilst for the points from ∂Ω∖D¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯ the existence of bi-Lipschitzian boundary charts is required.

Description
Keywords
Collections
License
This document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties.
Dieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden.