The square root problem for second order, divergence form operators with mixed boundary conditions on Lp

dc.contributor.authorAuscher, Pascal
dc.contributor.authorBadr, Nadine
dc.contributor.authorHaller-Dintelmann, Robert
dc.contributor.authorRehberg, Joachim
dc.date.accessioned2017-01-04T16:10:00Z
dc.date.available2019-06-28T08:04:07Z
dc.date.issued2012
dc.description.abstractWe show that, under general conditions, the operator (−∇⋅μ∇+1)1/2 with mixed boundary conditions provides a topological isomorphism between W1,pD(Ω) and Lp(Ω), for p∈]1,2[ if one presupposes that this isomorphism holds true for p=2. The domain Ω is assumed to be bounded, the Dirichlet part D of the boundary has to satisfy the well-known Ahlfors-David condition, whilst for the points from ∂Ω∖D¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯ the existence of bi-Lipschitzian boundary charts is required.eng
dc.description.versionpublishedVersioneng
dc.identifier.urihttps://oa.tib.eu/renate/handle/123456789/2147
dc.language.isoengeng
dc.publisherCambridge : arXiveng
dc.relation.urihttps://arxiv.org/abs/1210.0780
dc.rights.licenseThis document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties.eng
dc.rights.licenseDieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden.ger
dc.subject.ddc510eng
dc.subject.otherKato’s square root problemeng
dc.subject.otherElliptic operators with bounded measurable coefficientseng
dc.subject.otherInterpolation in case of mixed boundary valueseng
dc.subject.otherHardy’s inequalityeng
dc.subject.otherCalderon-Zygmund decompositioneng
dc.titleThe square root problem for second order, divergence form operators with mixed boundary conditions on Lpeng
dc.typeReporteng
dc.typeTexteng
tib.accessRightsopenAccesseng
wgl.contributorWIASeng
wgl.subjectMathematikeng
wgl.typeReport / Forschungsbericht / Arbeitspapiereng
Files
Collections