Well-posedness and regularity for a fractional tumor growth model
dc.bibliographicCitation.seriesTitle | WIAS Preprints | eng |
dc.bibliographicCitation.volume | 2613 | |
dc.contributor.author | Colli, Pierluigi | |
dc.contributor.author | Gilardi, Gianni | |
dc.contributor.author | Sprekels, Jürgen | |
dc.date.accessioned | 2022-06-23T14:30:44Z | |
dc.date.available | 2022-06-23T14:30:44Z | |
dc.date.issued | 2019 | |
dc.description.abstract | In this paper, we study a system of three evolutionary operator equations involving fractional powers of selfadjoint, monotone, unbounded, linear operators having compact resolvents. This system constitutes a generalization of a phase field system of Cahn--Hilliard type modelling tumor growth that has been proposed in Hawkins-Daarud et al. (Int. J. Numer. Math. Biomed. Eng. 28 (2012), 3--24) and investigated in recent papers co-authored by the present authors and E. Rocca. The model consists of a Cahn--Hilliard equation for the tumor cell fraction φ, coupled to a reaction-diffusion equation for a function S representing the nutrient-rich extracellular water volume fraction. Effects due to fluid motion are neglected. The generalization investigated in this paper is motivated by the possibility that the diffusional regimes governing the evolution of the different constituents of the model may be of different (e.g., fractional) type. Under rather general assumptions, well-posedness and regularity results are shown. In particular, by writing the equation governing the evolution of the chemical potential in the form of a general variational inequality, also singular or nonsmooth constributions of logarithmic or of double obstacle type to the energy density can be admitted. | eng |
dc.description.version | publishedVersion | eng |
dc.identifier.uri | https://oa.tib.eu/renate/handle/123456789/9197 | |
dc.identifier.uri | https://doi.org/10.34657/8235 | |
dc.language.iso | eng | |
dc.publisher | Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik | |
dc.relation.doi | https://doi.org/10.20347/WIAS.PREPRINT.2613 | |
dc.relation.issn | 2198-5855 | |
dc.rights.license | This document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties. | eng |
dc.rights.license | Dieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden. | ger |
dc.subject.ddc | 510 | |
dc.subject.other | Fractional operators | eng |
dc.subject.other | Cahn--Hilliard systems | eng |
dc.subject.other | well-posedness | eng |
dc.subject.other | regularity of solutions | eng |
dc.subject.other | tumor growth models | eng |
dc.title | Well-posedness and regularity for a fractional tumor growth model | eng |
dc.type | Report | eng |
dc.type | Text | eng |
dcterms.extent | 30 S. | |
tib.accessRights | openAccess | |
wgl.contributor | WIAS | |
wgl.subject | Mathematik | |
wgl.type | Report / Forschungsbericht / Arbeitspapier |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- wias_preprints_2613.pdf
- Size:
- 333.5 KB
- Format:
- Adobe Portable Document Format
- Description: