Evidence for the In‐Situ Generation of Plasma Depletion Structures Over the Transition Region of Geomagnetic Low‐Mid Latitude

dc.bibliographicCitation.firstPagee2020JA028837eng
dc.bibliographicCitation.issue9eng
dc.bibliographicCitation.journalTitleJGR : Space physicseng
dc.bibliographicCitation.volume126eng
dc.contributor.authorSivakandan, M.
dc.contributor.authorMondal, S.
dc.contributor.authorSarkhel, S.
dc.contributor.authorChakrabarty, D.
dc.contributor.authorSunil Krishna, M.V.
dc.contributor.authorUpadhayaya, A.K.
dc.contributor.authorShinbori, A.
dc.contributor.authorSori, T.
dc.contributor.authorKannaujiya, S.
dc.contributor.authorChampati Ray, P.K.
dc.date.accessioned2022-03-22T07:40:55Z
dc.date.available2022-03-22T07:40:55Z
dc.date.issued2021
dc.description.abstractOn a geomagnetic quiet night of October 29, 2018, we captured an observational evidence of the onset of dark band structures within the field-of-view of an all-sky airglow imager operating at 630.0 nm over a geomagnetic low-mid latitude transition region, Hanle, Leh Ladakh. Simultaneous ionosonde observations over New Delhi shows the occurrence of spread-F in the ionograms. Additionally, virtual and peak height indicate vertical upliftment in the F layer altitude and reduction in the ionospheric peak frequency were also observed when the dark band pass through the ionosonde location. All these results confirmed that the observed depletions are indeed associated with ionospheric F region plasma irregularities. The rate of total electron content index (ROTI) indicates the absence of plasma bubble activities over the equatorial/low latitude region which confirms that the observed event is a mid-latitude plasma depletion. Our calculations reveal that the growth time of the plasma depletion is ∼2 h if one considers only the Perkins instability mechanism. This is not consistent with the present observations as the plasma depletion developed within ∼25 min. By invoking possible Es layer instabilities and associated E-F region coupling, we show that the growth rate increases roughly by an order of magnitude. This strongly suggests that the Cosgrove and Tsunoda mechanism may be simultaneously operational in this case. Furthermore, it is also suggested that reduced F region flux-tube integrated conductivity in the southern part of onset region created conducive background conditions for the growth of the plasma depletion on this night.eng
dc.description.versionpublishedVersioneng
dc.identifier.urihttps://oa.tib.eu/renate/handle/123456789/8301
dc.identifier.urihttps://doi.org/10.34657/7339
dc.language.isoengeng
dc.publisherHoboken, NJ : Wileyeng
dc.relation.doihttps://doi.org/10.1029/2020JA028837
dc.relation.essn2169-9402
dc.rights.licenseCC BY-NC-ND 4.0 Unportedeng
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/eng
dc.subject.ddc550eng
dc.subject.ddc520eng
dc.subject.otherall-sky airglow imagereng
dc.subject.otherE-F couplingeng
dc.subject.othermid-latitude plasma depletioneng
dc.subject.otherO (1D) 630.0 nm airglow emissioneng
dc.subject.otherPerkins instabilityeng
dc.subject.otherTECeng
dc.titleEvidence for the In‐Situ Generation of Plasma Depletion Structures Over the Transition Region of Geomagnetic Low‐Mid Latitudeeng
dc.typeArticleeng
dc.typeTexteng
tib.accessRightsopenAccesseng
wgl.contributorIAPeng
wgl.subjectGeowissenschafteneng
wgl.typeZeitschriftenartikeleng
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Evidence_for_the_In-Situ_Generation.pdf
Size:
3.05 MB
Format:
Adobe Portable Document Format
Description: