Thick points for Gaussian free fields with different cut-offs

dc.bibliographicCitation.seriesTitleWIAS Preprintseng
dc.bibliographicCitation.volume1999
dc.contributor.authorCipriani, Alessandra
dc.contributor.authorHazra, Rajat Subhra
dc.date.accessioned2016-03-24T17:37:02Z
dc.date.available2019-06-28T08:12:42Z
dc.date.issued2014
dc.description.abstractMassive and massless Gaussian free fields can be described as generalized Gaussian processes indexed by an appropriate space of functions. In this article we study various approaches to approximate these fields and look at the fractal properties of the thick points of their cut-offs. Under some sufficient conditions for a centered Gaussian process with logarithmic variance we study the set of thick points and derive their Hausdorff dimension. We prove that various cut-offs for Gaussian free fields satisfy these assumptions. We also give sufficient conditions for comparing thick points of different cut-offs.eng
dc.description.versionpublishedVersioneng
dc.formatapplication/pdf
dc.identifier.issn2198-5855
dc.identifier.urihttps://doi.org/10.34657/3384
dc.identifier.urihttps://oa.tib.eu/renate/handle/123456789/2886
dc.language.isoengeng
dc.publisherBerlin : Weierstraß-Institut für Angewandte Analysis und Stochastikeng
dc.relation.issn0946-8633eng
dc.rights.licenseThis document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties.eng
dc.rights.licenseDieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden.ger
dc.subject.ddc510eng
dc.subject.otherGaussian multiplicative chaoseng
dc.subject.othercut-offseng
dc.subject.otherLiouville quantum gravityeng
dc.subject.otherthick pointseng
dc.subject.otherHausdorff dimensioneng
dc.titleThick points for Gaussian free fields with different cut-offseng
dc.typeReporteng
dc.typeTexteng
tib.accessRightsopenAccesseng
wgl.contributorWIASeng
wgl.subjectMathematikeng
wgl.typeReport / Forschungsbericht / Arbeitspapiereng
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
813162165.pdf
Size:
303.48 KB
Format:
Adobe Portable Document Format
Description: