Characterization of the Si:Se+ Spin-Photon Interface

dc.bibliographicCitation.firstPage44036eng
dc.bibliographicCitation.issue4eng
dc.bibliographicCitation.volume11eng
dc.contributor.authorDeAbreu, Adam
dc.contributor.authorBowness, Camille
dc.contributor.authorAbraham, Rohan J.S.
dc.contributor.authorMedvedova, Alzbeta
dc.contributor.authorMorse, Kevin J.
dc.contributor.authorRiemann, Helge
dc.contributor.authorAbrosimov, Nikolay V.
dc.contributor.authorBecker, Peter
dc.contributor.authorPohl, Hans-Joachim
dc.contributor.authorThewalt, Michael L.W.
dc.contributor.authorSimmons, Stephanie
dc.date.accessioned2021-12-03T09:55:22Z
dc.date.available2021-12-03T09:55:22Z
dc.date.issued2019
dc.description.abstractSilicon is the most-developed electronic and photonic technological platform and hosts some of the highest-performance spin and photonic qubits developed to date. A hybrid quantum technology harnessing an efficient spin-photon interface in silicon would unlock considerable potential by enabling ultralong-lived photonic memories, distributed quantum networks, microwave-to-optical photon converters, and spin-based quantum processors, all linked with integrated silicon photonics. However, the indirect band gap of silicon makes identification of efficient spin-photon interfaces nontrivial. Here we build upon the recent identification of chalcogen donors as a promising spin-photon interface in silicon. We determine that the spin-dependent optical degree of freedom has a transition dipole moment stronger than previously thought [here 1.96(8) D], and the spin T1 lifetime in low magnetic fields is longer than previously thought [here longer than 4.6(1.5) h]. We furthermore determine the optical excited-state lifetime [7.7(4) ns], and therefore the natural radiative efficiency [0.80(9)%], and by measuring the phonon sideband determine the zero-phonon emission fraction [16(1)%]. Taken together, these parameters indicate that an integrated quantum optoelectronic platform based on chalcogen-donor qubits in silicon is well within reach of current capabilities.eng
dc.description.versionpublishedVersioneng
dc.identifier.urihttps://oa.tib.eu/renate/handle/123456789/7628
dc.identifier.urihttps://doi.org/10.34657/6675
dc.language.isoengeng
dc.publisherCollege Park, Md. [u.a.] : American Physical Societyeng
dc.relation.doihttps://doi.org/10.1103/PhysRevApplied.11.044036
dc.relation.essn2331-7019
dc.relation.ispartofseriesPhysical review applied 11 (2019), Nr. 4eng
dc.rights.licenseCC BY 4.0 Unportedeng
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/eng
dc.subjectphotonic qubitseng
dc.subjectspin qubitseng
dc.subjectquantum technologyeng
dc.subject.ddc530eng
dc.titleCharacterization of the Si:Se+ Spin-Photon Interfaceeng
dc.typearticleeng
dc.typeTexteng
dcterms.bibliographicCitation.journalTitlePhysical review appliedeng
tib.accessRightsopenAccesseng
wgl.contributorIKZeng
wgl.subjectPhysikeng
wgl.typeZeitschriftenartikeleng
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Characterization of the Si_Se+ Spin-Photon Interface.pdf
Size:
1.35 MB
Format:
Adobe Portable Document Format
Description:
Collections