Voltage‐Controlled Deblocking of Magnetization Reversal in Thin Films by Tunable Domain Wall Interactions and Pinning Sites

dc.bibliographicCitation.firstPage2000406eng
dc.bibliographicCitation.issue11
dc.bibliographicCitation.lastPage81eng
dc.bibliographicCitation.volume6eng
dc.contributor.authorZehner, Jonas
dc.contributor.authorSoldatov, Ivan
dc.contributor.authorSchneider, Sebastian
dc.contributor.authorHeller, René
dc.contributor.authorKhojasteh, Nasrin B.
dc.contributor.authorSchiemenez, Sandra
dc.contributor.authorFähler, Sebastian
dc.contributor.authorNielsch, Kornelius
dc.contributor.authorSchäfer, Rudolf
dc.contributor.authorLeistner, Karin
dc.date.accessioned2020-10-07T14:35:13Z
dc.date.available2020-10-07T14:35:13Z
dc.date.issued2020
dc.description.abstractHigh energy efficiency of magnetic devices is crucial for applications such as data storage, computation, and actuation. Redox‐based (magneto‐ionic) voltage control of magnetism is a promising room‐temperature pathway to improve energy efficiency. However, for ferromagnetic metals, the magneto‐ionic effects studied so far require ultrathin films with tunable perpendicular magnetic anisotropy or nanoporous structures for appreciable effects. This paper reports a fully reversible, low voltage‐induced collapse of coercivity and remanence by redox reactions in iron oxide/iron films with uniaxial in‐plane anisotropy. In the initial iron oxide/iron films, Néel wall interactions stabilize a blocked state with high coercivity. During the voltage‐triggered reduction of the iron oxide layer, in situ Kerr microscopy reveals inverse changes of coercivity and anisotropy, and a coarsening of the magnetic microstructure. These results confirm a magneto‐ionic deblocking mechanism, which relies on changes of the Néel wall interactions, and of the microstructural domain‐wall‐pinning sites. With this approach, voltage‐controlled 180° magnetization switching with high energy‐efficiency is achieved. It opens up possibilities for developing magnetic devices programmable by ultralow power and for the reversible tuning of defect‐controlled materials in general.eng
dc.description.versionpublishedVersioneng
dc.identifier.urihttps://doi.org/10.34657/4441
dc.identifier.urihttps://oa.tib.eu/renate/handle/123456789/5812
dc.language.isoengeng
dc.publisherHoboken, NJ : Wileyeng
dc.relation.doihttps://doi.org/10.1002/aelm.202000406
dc.relation.ispartofseriesAdvanced Electronic Materials 6 (2020), 11eng
dc.rights.licenseCC BY 4.0 Unportedeng
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/eng
dc.subjectmagnetismeng
dc.subjectferromagnetic metalseng
dc.subjectiron filmseng
dc.subject.ddc620eng
dc.titleVoltage‐Controlled Deblocking of Magnetization Reversal in Thin Films by Tunable Domain Wall Interactions and Pinning Siteseng
dc.typearticleeng
dc.typeTexteng
dcterms.bibliographicCitation.journalTitleAdvanced Electronic Materialseng
tib.accessRightsopenAccesseng
wgl.contributorIFWDeng
wgl.subjectIngenieurwissenschafteneng
wgl.typeZeitschriftenartikeleng
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Zehner2020.pdf
Size:
2.02 MB
Format:
Adobe Portable Document Format
Description: