On the left tail asymptotics for the limit law of supercritical Galton-Watson processes in the Böttcher case

dc.bibliographicCitation.seriesTitleWIAS Preprintseng
dc.bibliographicCitation.volume1224
dc.contributor.authorFleischmann, Klaus
dc.contributor.authorWachtel, Vitali
dc.date.accessioned2016-03-24T17:38:14Z
dc.date.available2019-06-28T08:02:31Z
dc.date.issued2007
dc.description.abstractUnder a well-known scaling, supercritical Galton-Watson processes $Z$ converge to a non-degenerate non-negative random limit variable $W.$ We are dealing with the left tail (i.e. lose to the origin) asymptotics of its law. In the Bötcher case (i.e. if always at least two offspring are born), we describe the precise asymptotics exposing tiny oscillations (Theorem 1). Under a reasonable additional assumption, the oscillations disappear (Corollary 2). Also in the Böttcher case, we improve a recent lower deviation probability result by describing the precise asymptotics under a logarithmic scaling (Theorem 3). Under additional assumptions, we even get the fine (i.e. without log-scaling) asymptotics (Theorem 4).eng
dc.description.versionpublishedVersioneng
dc.formatapplication/pdf
dc.identifier.issn0946-8633
dc.identifier.urihttps://doi.org/10.34657/2894
dc.identifier.urihttps://oa.tib.eu/renate/handle/123456789/1857
dc.language.isoengeng
dc.publisherBerlin : Weierstraß-Institut für Angewandte Analysis und Stochastikeng
dc.relation.issn0946-8633eng
dc.rights.licenseThis document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties.eng
dc.rights.licenseDieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden.ger
dc.subject.ddc510eng
dc.titleOn the left tail asymptotics for the limit law of supercritical Galton-Watson processes in the Böttcher caseeng
dc.typeReporteng
dc.typeTexteng
tib.accessRightsopenAccesseng
wgl.contributorWIASeng
wgl.subjectMathematikeng
wgl.typeReport / Forschungsbericht / Arbeitspapiereng
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
54625747X.pdf
Size:
336.26 KB
Format:
Adobe Portable Document Format
Description: