View angle dependence of MODIS liquid water path retrievals in warm oceanic clouds

dc.bibliographicCitation.firstPage8304
dc.bibliographicCitation.issue13eng
dc.bibliographicCitation.journalTitleJournal of Geophysical Research: Atmosphereseng
dc.bibliographicCitation.lastPage8328
dc.bibliographicCitation.volume118
dc.contributor.authorHorváth, Ákos
dc.contributor.authorSeethala, Chellappan
dc.contributor.authorDeneke, Hartwig
dc.date.accessioned2018-01-30T06:44:03Z
dc.date.available2019-06-26T17:17:56Z
dc.date.issued2014
dc.description.abstractWe investigated the view angle dependence of domain mean Moderate Resolution Imaging Spectroradiometer (MODIS) liquid water path (LWP) and that of corresponding cloud optical thickness, effective radius, and liquid cloud fraction as proxy for plane-parallel retrieval biases. Independent Advanced Microwave Scanning Radiometer–EOS LWP was used to corroborate that the observed variations with sun-view geometry were not severely affected by seasonal/latitudinal changes in cloud properties. Microwave retrievals showed generally small (<10%) cross-swath variations. The view angle (cross-swath) dependence of MODIS optical thickness was weaker in backscatter than forward scatter directions and transitioned from mild ∩ shape to stronger ∪ shape as heterogeneity, sun angle, or latitude increased. The 2.2 µm effective radius variations always had a ∪ shape, which became pronounced and asymmetric toward forward scatter in the most heterogeneous clouds and/or at the lowest sun. Cloud fraction had the strongest and always ∪-shaped view angle dependence. As a result, in-cloud MODIS cloud liquid water path (CLWP) showed surprisingly good view angle (cross-swath) consistency, usually comparable to that of microwave retrievals, due to cancelation between optical thickness and effective radius biases. Larger (20–40%) nadir-relative increases were observed in the most extreme heterogeneity and sun angle bins, that is, typically in the polar regions, which, however, constituted only 3–8% of retrievals. The good consistency of MODIS in-cloud CLWP was lost for gridbox mean LWP, which was dominated by the strong cloud fraction increase with view angle. More worryingly, MODIS LWP exhibited significant and systematic absolute increases with heterogeneity and sun angle that is not present in microwave LWP.eng
dc.description.versionpublishedVersioneng
dc.formatapplication/pdf
dc.identifier.urihttps://doi.org/10.34657/1385
dc.identifier.urihttps://oa.tib.eu/renate/handle/123456789/488
dc.language.isoengeng
dc.publisherHoboken, NJ : Wileyeng
dc.relation.doihttps://doi.org/10.1002/2013JD021355
dc.rights.licenseCC BY-NC-ND 3.0 Unportedeng
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/3.0/eng
dc.subject.ddc550eng
dc.subject.otherliquid water patheng
dc.subject.otherplane-parallel biaseng
dc.subject.otherthree-dimensional effectseng
dc.subject.otherview angle dependenceeng
dc.subject.othercloud remote sensingeng
dc.titleView angle dependence of MODIS liquid water path retrievals in warm oceanic cloudseng
dc.typeArticleeng
dc.typeTexteng
tib.accessRightsopenAccesseng
wgl.contributorTROPOSeng
wgl.subjectGeowissenschafteneng
wgl.typeZeitschriftenartikeleng
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Horv-th_et_al-2014-Journal_of_Geophysical_Research__Atmospheres.pdf
Size:
2.35 MB
Format:
Adobe Portable Document Format
Description: