Scanning single quantum emitter fluorescence lifetime imaging: Quantitative analysis of the local density of photonic states

dc.bibliographicCitation.firstPage2623eng
dc.bibliographicCitation.issue5eng
dc.bibliographicCitation.journalTitleNano Letterseng
dc.bibliographicCitation.volume14eng
dc.contributor.authorSchell, A.W.
dc.contributor.authorEngel, P.
dc.contributor.authorWerra, J.F.M.
dc.contributor.authorWolff, C.
dc.contributor.authorBusch, K.
dc.contributor.authorBenson, O.
dc.date.accessioned2020-11-12T07:22:15Z
dc.date.available2020-11-12T07:22:15Z
dc.date.issued2014
dc.description.abstractTheir intrinsic properties render single quantum systems as ideal tools for quantum enhanced sensing and microscopy. As an additional benefit, their size is typically on an atomic scale that enables sensing with very high spatial resolution. Here, we report on utilizing a single nitrogen vacancy center in nanodiamond for performing three-dimensional scanning-probe fluorescence lifetime imaging microscopy. By measuring changes of the single emitter's lifetime, information on the local density of optical states is acquired at the nanoscale. Three-dimensional ab initio discontinuous Galerkin time-domain simulations are used in order to verify the results and to obtain additional insights. This combination of experiment and simulations to gather quantitative information on the local density of optical states is of direct relevance for the understanding of fundamental quantum optical processes as well as for the engineering of novel photonic and plasmonic devices.eng
dc.description.versionpublishedVersioneng
dc.identifier.urihttps://doi.org/10.34657/4543
dc.identifier.urihttps://oa.tib.eu/renate/handle/123456789/5914
dc.language.isoengeng
dc.publisherWashington, DC : American Chemical Societyeng
dc.relation.doihttps://doi.org/10.1021/nl500460c
dc.relation.issn1530-6984
dc.rights.licenseACS AuthorChoiceeng
dc.rights.urihttps://pubs.acs.org/page/policy/authorchoice_termsofuse.htmleng
dc.subject.ddc530eng
dc.subject.otherdiscontinuous Galerkin time-domain simulationeng
dc.subject.otherFLIMeng
dc.subject.othernanowireeng
dc.subject.otherNitrogen vacancy centereng
dc.subject.otherplasmonicseng
dc.subject.otherscanning probe microscopyeng
dc.subject.otherGalerkin methodseng
dc.subject.otherNanodiamondseng
dc.subject.otherNanowireseng
dc.subject.otherNitrogeneng
dc.subject.otherPlasmonseng
dc.subject.otherQuantum electronicseng
dc.subject.otherQuantum opticseng
dc.subject.otherScanning probe microscopyeng
dc.subject.otherTime domain analysiseng
dc.subject.otherFLIMeng
dc.subject.otherFluorescence lifetime imagingeng
dc.subject.otherFluorescence lifetime imaging microscopyeng
dc.subject.otherLocal density of photonic stateeng
dc.subject.otherNitrogen-vacancy centereng
dc.subject.otherPlasmonicseng
dc.subject.otherTime-domain simulationseng
dc.subject.otherVery high spatial resolutionseng
dc.subject.otherFluorescenceeng
dc.titleScanning single quantum emitter fluorescence lifetime imaging: Quantitative analysis of the local density of photonic stateseng
dc.typeArticleeng
dc.typeTexteng
tib.accessRightsopenAccesseng
wgl.contributorMBIeng
wgl.subjectPhysikeng
wgl.typeZeitschriftenartikeleng
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Schell2014.pdf
Size:
2.92 MB
Format:
Adobe Portable Document Format
Description:
Collections