Spectral estimation of the fractional order of a Lévy process

Loading...
Thumbnail Image
Date
2010
Volume
1491
Issue
Journal
Series Titel
WIAS Preprints
Book Title
Publisher
Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik
Link to publishers version
Abstract

We consider the problem of estimating the fractional order of a Levy process from low frequency historical and options data. An estimation methodology is developed which allows us to treat both estimation and calibration problems in a unified way. The corresponding procedure consists of two steps: the estimation of a conditional characteristic function and the weighted least squares estimation of the fractional order in spectral domain. While the second step is identical for both calibration and estimation, the first one depends on the problem at hand. Minimax rates of convergence for the fractional order estimate are derived, the asymptotic normality is proved and a data-driven algorithm based on aggregation is proposed. The performance of the estimator in both estimation and calibration setups is illustrated by a simulation study

Description
Keywords
License
This document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties.
Dieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden.