Sharp energy estimates for nonlinear fractional diffusion equations

No Thumbnail Available
Date
2012
Volume
Issue
Journal
Series Titel
Book Title
Publisher
Cambridge : arXiv
Link to publishers version
Abstract

We study the nonlinear fractional equation (−Δ)su=f(u) in Rn, for all fractions 0<s<1 and all nonlinearities f. For every fractional power s∈(0,1), we obtain sharp energy estimates for bounded global minimizers and for bounded monotone solutions. They are sharp since they are optimal for solutions depending only on one Euclidian variable. As a consequence, we deduce the one-dimensional symmetry of bounded global minimizers and of bounded monotone solutions in dimension n=3 whenever 1/2≤s<1. This result is the analogue of a conjecture of De Giorgi on one-dimensional symmetry for the classical equation −Δu=f(u) in Rn. It remains open for n=3 and s<1/2, and also for n≥4 and all s.

Description
Keywords
Collections
License
Dieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden.
This document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties.