Sharp energy estimates for nonlinear fractional diffusion equations

dc.contributor.authorCabre, Xavier
dc.contributor.authorCinti, Eleonora
dc.date.accessioned2016-05-20T17:42:08Z
dc.date.available2019-06-28T08:24:13Z
dc.date.issued2012
dc.description.abstractWe study the nonlinear fractional equation (−Δ)su=f(u) in Rn, for all fractions 0<s<1 and all nonlinearities f. For every fractional power s∈(0,1), we obtain sharp energy estimates for bounded global minimizers and for bounded monotone solutions. They are sharp since they are optimal for solutions depending only on one Euclidian variable. As a consequence, we deduce the one-dimensional symmetry of bounded global minimizers and of bounded monotone solutions in dimension n=3 whenever 1/2≤s<1. This result is the analogue of a conjecture of De Giorgi on one-dimensional symmetry for the classical equation −Δu=f(u) in Rn. It remains open for n=3 and s<1/2, and also for n≥4 and all s.
dc.description.versionpublishedVersioneng
dc.identifier.urihttps://oa.tib.eu/renate/handle/123456789/3397
dc.language.isoengeng
dc.publisherCambridge : arXiv
dc.relation.urihttp://arxiv.org/abs/1207.6194
dc.rights.licenseDieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden.ger
dc.rights.licenseThis document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties.eng
dc.subject.ddc510
dc.subject.otherAnalysis of PDEseng
dc.titleSharp energy estimates for nonlinear fractional diffusion equations
dc.typeReporteng
dc.typeTexteng
tib.accessRightsopenAccesseng
wgl.contributorWIASeng
wgl.subjectMathematikeng
wgl.typeReport / Forschungsbericht / Arbeitspapiereng
Files
Collections