From rough path estimates to multilevel Monte Carlo

dc.bibliographicCitation.seriesTitleWIAS Preprintseng
dc.bibliographicCitation.volume1787
dc.contributor.authorBayer, Christian
dc.contributor.authorFriz, Peter K.
dc.contributor.authorRiedel, Sebastian
dc.contributor.authorSchoenmakers, John G.M.
dc.date.accessioned2016-03-24T17:37:29Z
dc.date.available2019-06-28T08:02:01Z
dc.date.issued2013
dc.description.abstractDiscrete approximations to solutions of stochastic differential equations are well-known to converge with strong rate 1=2. Such rates have played a key-role in Giles multilevel Monte Carlo method [Giles, Oper. Res. 2008] which gives a substantial reduction of the computational effort necessary for the evaluation of diffusion functionals. In the present article similar results are established for large classes of rough differential equations driven by Gaussian processes (including fractional Brownian motion with H > 1=4 as special case).eng
dc.description.versionpublishedVersioneng
dc.formatapplication/pdf
dc.identifier.issn0946-8633
dc.identifier.urihttps://doi.org/10.34657/2409
dc.identifier.urihttps://oa.tib.eu/renate/handle/123456789/1677
dc.language.isoengeng
dc.publisherBerlin : Weierstraß-Institut für Angewandte Analysis und Stochastikeng
dc.relation.issn0946-8633eng
dc.rights.licenseThis document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties.eng
dc.rights.licenseDieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden.ger
dc.subject.ddc510eng
dc.titleFrom rough path estimates to multilevel Monte Carloeng
dc.typeReporteng
dc.typeTexteng
tib.accessRightsopenAccesseng
wgl.contributorWIASeng
wgl.subjectMathematikeng
wgl.typeReport / Forschungsbericht / Arbeitspapiereng
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
750714549.pdf
Size:
494.98 KB
Format:
Adobe Portable Document Format
Description: