Glycosaminoglycan-based hydrogels to modulate heterocellular communication in in vitro angiogenesis models

dc.bibliographicCitation.firstPage4414eng
dc.bibliographicCitation.lastPage975eng
dc.bibliographicCitation.volume4eng
dc.contributor.authorChwalek, K.
dc.contributor.authorTsurkan, M.V.
dc.contributor.authorFreudenberg, U.
dc.contributor.authorWerner, C.
dc.date.accessioned2020-11-20T17:21:12Z
dc.date.available2020-11-20T17:21:12Z
dc.date.issued2014
dc.description.abstractAngiogenesis, the outgrowth of blood vessels, is crucial in development, disease and regeneration. Studying angiogenesis in vitro remains challenging because the capillary morphogenesis of endothelial cells (ECs) is controlled by multiple exogenous signals. Therefore, a set of in situ-forming starPEG-heparin hydrogels was used to identify matrix parameters and cellular interactions that best support EC morphogenesis. We showed that a particular type of soft, matrix metalloproteinase-degradable hydrogel containing covalently bound integrin ligands and reversibly conjugated pro-angiogenic growth factors could boost the development of highly branched, interconnected, and lumenized endothelial capillary networks. Using these effective matrix conditions, 3D heterocellular interactions of ECs with different mural cells were demonstrated that enabled EC network modulation and maintenance of stable vascular capillaries over periods of about one month in vitro. The approach was also shown to permit in vitro tumor vascularization experiments with unprecedented levels of control over both ECs and tumor cells. In total, the introduced 3D hydrogel co-culture system could offer unique options for dissecting and adjusting biochemical, biophysical, and cell-cell triggers in tissue-related vascularization models.eng
dc.description.versionpublishedVersioneng
dc.identifier.urihttps://doi.org/10.34657/4607
dc.identifier.urihttps://oa.tib.eu/renate/handle/123456789/5978
dc.language.isoengeng
dc.publisherLondon : Nature Publishing Groupeng
dc.relation.doihttps://doi.org/10.1038/srep04414
dc.relation.ispartofseriesScientific Reports 4 (2014)eng
dc.relation.issn2045-2322
dc.rights.licenseCC BY-NC-ND 3.0 Unportedeng
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/3.0/eng
dc.subjectheparineng
dc.subjecthydrogeleng
dc.subjectmacrogol derivativeeng
dc.subjectmatrix metalloproteinaseeng
dc.subjectangiogenesiseng
dc.subjectbiological modeleng
dc.subjectcell communicationeng
dc.subjectchemistryeng
dc.subjectcocultureeng
dc.subjectculture techniqueeng
dc.subjectcytologyeng
dc.subjectendothelium celleng
dc.subjectgrowth, development and agingeng
dc.subjectHepG2 cell lineeng
dc.subjecthumaneng
dc.subjecthydrogeleng
dc.subjectmetabolismeng
dc.subjectmorphogenesiseng
dc.subjectneovascularization (pathology)eng
dc.subjectvascular endotheliumeng
dc.subjectCell Communicationeng
dc.subjectCell Culture Techniqueseng
dc.subjectCoculture Techniqueseng
dc.subjectEndothelial Cellseng
dc.subjectEndothelium, Vasculareng
dc.subjectHep G2 Cellseng
dc.subjectHeparineng
dc.subjectHumanseng
dc.subjectHydrogelseng
dc.subjectMatrix Metalloproteinaseseng
dc.subjectModels, Biologicaleng
dc.subjectMorphogenesiseng
dc.subjectNeovascularization, Pathologiceng
dc.subjectNeovascularization, Physiologiceng
dc.subjectPolyethylene Glycolseng
dc.subject.ddc610eng
dc.titleGlycosaminoglycan-based hydrogels to modulate heterocellular communication in in vitro angiogenesis modelseng
dc.typearticleeng
dc.typeTexteng
dcterms.bibliographicCitation.journalTitleScientific Reportseng
tib.accessRightsopenAccesseng
wgl.contributorIPFeng
wgl.subjectMedizin, Gesundheiteng
wgl.typeZeitschriftenartikeleng
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Chwalek2014.pdf
Size:
1.84 MB
Format:
Adobe Portable Document Format
Description:
Collections