Glycosaminoglycan-based hydrogels to modulate heterocellular communication in in vitro angiogenesis models

dc.bibliographicCitation.firstPage4414eng
dc.bibliographicCitation.journalTitleScientific Reportseng
dc.bibliographicCitation.lastPage975eng
dc.bibliographicCitation.volume4eng
dc.contributor.authorChwalek, K.
dc.contributor.authorTsurkan, M.V.
dc.contributor.authorFreudenberg, U.
dc.contributor.authorWerner, C.
dc.date.accessioned2020-11-20T17:21:12Z
dc.date.available2020-11-20T17:21:12Z
dc.date.issued2014
dc.description.abstractAngiogenesis, the outgrowth of blood vessels, is crucial in development, disease and regeneration. Studying angiogenesis in vitro remains challenging because the capillary morphogenesis of endothelial cells (ECs) is controlled by multiple exogenous signals. Therefore, a set of in situ-forming starPEG-heparin hydrogels was used to identify matrix parameters and cellular interactions that best support EC morphogenesis. We showed that a particular type of soft, matrix metalloproteinase-degradable hydrogel containing covalently bound integrin ligands and reversibly conjugated pro-angiogenic growth factors could boost the development of highly branched, interconnected, and lumenized endothelial capillary networks. Using these effective matrix conditions, 3D heterocellular interactions of ECs with different mural cells were demonstrated that enabled EC network modulation and maintenance of stable vascular capillaries over periods of about one month in vitro. The approach was also shown to permit in vitro tumor vascularization experiments with unprecedented levels of control over both ECs and tumor cells. In total, the introduced 3D hydrogel co-culture system could offer unique options for dissecting and adjusting biochemical, biophysical, and cell-cell triggers in tissue-related vascularization models.eng
dc.description.versionpublishedVersioneng
dc.identifier.urihttps://doi.org/10.34657/4607
dc.identifier.urihttps://oa.tib.eu/renate/handle/123456789/5978
dc.language.isoengeng
dc.publisherLondon : Nature Publishing Groupeng
dc.relation.doihttps://doi.org/10.1038/srep04414
dc.relation.issn2045-2322
dc.rights.licenseCC BY-NC-ND 3.0 Unportedeng
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/3.0/eng
dc.subject.ddc610eng
dc.subject.otherheparineng
dc.subject.otherhydrogeleng
dc.subject.othermacrogol derivativeeng
dc.subject.othermatrix metalloproteinaseeng
dc.subject.otherangiogenesiseng
dc.subject.otherbiological modeleng
dc.subject.othercell communicationeng
dc.subject.otherchemistryeng
dc.subject.othercocultureeng
dc.subject.otherculture techniqueeng
dc.subject.othercytologyeng
dc.subject.otherendothelium celleng
dc.subject.othergrowth, development and agingeng
dc.subject.otherHepG2 cell lineeng
dc.subject.otherhumaneng
dc.subject.otherhydrogeleng
dc.subject.othermetabolismeng
dc.subject.othermorphogenesiseng
dc.subject.otherneovascularization (pathology)eng
dc.subject.othervascular endotheliumeng
dc.subject.otherCell Communicationeng
dc.subject.otherCell Culture Techniqueseng
dc.subject.otherCoculture Techniqueseng
dc.subject.otherEndothelial Cellseng
dc.subject.otherEndothelium, Vasculareng
dc.subject.otherHep G2 Cellseng
dc.subject.otherHeparineng
dc.subject.otherHumanseng
dc.subject.otherHydrogelseng
dc.subject.otherMatrix Metalloproteinaseseng
dc.subject.otherModels, Biologicaleng
dc.subject.otherMorphogenesiseng
dc.subject.otherNeovascularization, Pathologiceng
dc.subject.otherNeovascularization, Physiologiceng
dc.subject.otherPolyethylene Glycolseng
dc.titleGlycosaminoglycan-based hydrogels to modulate heterocellular communication in in vitro angiogenesis modelseng
dc.typeArticleeng
dc.typeTexteng
tib.accessRightsopenAccesseng
wgl.contributorIPFeng
wgl.subjectMedizin, Gesundheiteng
wgl.typeZeitschriftenartikeleng
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Chwalek2014.pdf
Size:
1.84 MB
Format:
Adobe Portable Document Format
Description:
Collections