Molecularly Engineered Black Phosphorus Heterostructures with Improved Ambient Stability and Enhanced Charge Carrier Mobility

dc.bibliographicCitation.firstPage2105694eng
dc.bibliographicCitation.issue48eng
dc.bibliographicCitation.volume33eng
dc.contributor.authorShi, Huanhuan
dc.contributor.authorFu, Shuai
dc.contributor.authorLiu, Yannan
dc.contributor.authorNeumann, Christof
dc.contributor.authorWang, Mingchao
dc.contributor.authorDong, Haiyun
dc.contributor.authorKot, Piotr
dc.contributor.authorBonn, Mischa
dc.contributor.authorWang, Hai I.
dc.contributor.authorTurchanin, Andrey
dc.contributor.authorSchmidt, Oliver G.
dc.contributor.authorShaygan Nia, Ali
dc.contributor.authorYang, Sheng
dc.contributor.authorFeng, Xinliang
dc.date.accessioned2021-12-06T09:47:06Z
dc.date.available2021-12-06T09:47:06Z
dc.date.issued2021
dc.description.abstractOvercoming the intrinsic instability and preserving unique electronic properties are key challenges for the practical applications of black phosphorus (BP) under ambient conditions. Here, it is demonstrated that molecular heterostructures of BP and hexaazatriphenylene derivatives (BP/HATs) enable improved environmental stability and charge transport properties. The strong interfacial coupling and charge transfer between the HATs and the BP lattice decrease the surface electron density and protect BP sheets from oxidation, resulting in an excellent ambient lifetime of up to 21 d. Importantly, HATs increase the charge scattering time of BP, contributing to an improved carrier mobility of 97 cm2 V-1 s-1 , almost three times of the pristine BP films, based on noninvasive THz spectroscopic studies. The film mobility is an order of magnitude larger than previously reported values in exfoliated 2D materials. The strategy opens up new avenues for versatile applications of BP sheets and provides an effective method for tuning the physicochemical properties of other air-sensitive 2D semiconductors.eng
dc.description.versionpublishedVersioneng
dc.identifier.urihttps://oa.tib.eu/renate/jspui/handle/123456789/7647
dc.identifier.urihttps://doi.org/10.34657/6694
dc.language.isoengeng
dc.publisherWeinheim : Wiley-VCHeng
dc.relation.doihttps://doi.org/10.1002/adma.202105694
dc.relation.essn1521-4095
dc.relation.ispartofseriesAdvanced Materials 33 (2021), Nr. 48eng
dc.rights.licenseCC BY-NC-ND 4.0 Unportedeng
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/eng
dc.subject2D materialseng
dc.subjectambient stabilityeng
dc.subjectblack phosphoruseng
dc.subjectcharge carrier mobilityeng
dc.subjectmolecular heterostructureseng
dc.subject.ddc540eng
dc.subject.ddc660eng
dc.titleMolecularly Engineered Black Phosphorus Heterostructures with Improved Ambient Stability and Enhanced Charge Carrier Mobilityeng
dc.typearticleeng
dc.typeTexteng
dcterms.bibliographicCitation.journalTitleAdvanced Materialseng
tib.accessRightsopenAccesseng
wgl.contributorIFWDeng
wgl.subjectChemieeng
wgl.typeZeitschriftenartikeleng
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
adma.202105694.pdf
Size:
2.31 MB
Format:
Adobe Portable Document Format
Description:
Collections