Nanoporous Block Copolymer Membranes with Enhanced Solvent Resistance Via UV-Mediated Cross-Linking Strategies

dc.bibliographicCitation.date2022
dc.bibliographicCitation.firstPage2100632eng
dc.bibliographicCitation.issue3eng
dc.bibliographicCitation.journalTitleMacromolecular rapid communications : publishing the newsletters of the European Polymer Federationeng
dc.bibliographicCitation.volume43eng
dc.contributor.authorFrieß, Florian V.
dc.contributor.authorHu, Qiwei
dc.contributor.authorMayer, Jannik
dc.contributor.authorGemmer, Lea
dc.contributor.authorPresser, Volker
dc.contributor.authorBalzer, Bizan N.
dc.contributor.authorGallei, Markus
dc.date.accessioned2022-07-14T07:16:06Z
dc.date.available2022-07-14T07:16:06Z
dc.date.issued2021
dc.description.abstractIn this work, a block copolymer (BCP) consisting of poly((butyl methacrylate-co-benzophenone methacrylate-co-methyl methacrylate)-block-(2-hydroxyethyl methacrylate)) (P(BMA-co-BPMA-co-MMA)-b-P(HEMA)) is prepared by a two-step atom-transfer radical polymerization (ATRP) procedure. BCP membranes are fabricated applying the self-assembly and nonsolvent induced phase separation (SNIPS) process from a ternary solvent mixture of tetrahydrofuran (THF), 1,4-dioxane, and dimethylformamide (DMF). The presence of a porous top layer of the integral asymmetric membrane featuring pores of about 30 nm is confirmed via scanning electron microscopy (SEM). UV-mediated cross-linking protocols for the nanoporous membrane are adjusted to maintain the open and isoporous top layer. The swelling capability of the noncross-linked and cross-linked BCP membranes is investigated in water, water/ethanol mixture (1:1), and pure ethanol using atomic force microscopy, proving a stabilizing effect of the UV cross-linking on the porous structures. Finally, the influence of the herein described cross-linking protocols on water-flux measurements for the obtained membranes is explored. As a result, an increased swelling resistance for all tested solvents is found, leading to an increased water flux compared to the pristine membrane. The herein established UV-mediated cross-linking protocol is expected to pave the way to a new generation of porous and stabilized membranes within the fields of separation technologies.eng
dc.description.versionpublishedVersioneng
dc.identifier.urihttps://oa.tib.eu/renate/handle/123456789/9737
dc.identifier.urihttps://doi.org/10.34657/8774
dc.language.isoengeng
dc.publisherWeinheim : Wiley-VCHeng
dc.relation.doihttps://doi.org/10.1002/marc.202100632
dc.relation.essn1521-3927
dc.rights.licenseCC BY 4.0 Unportedeng
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/eng
dc.subject.ddc540eng
dc.subject.otheramphiphilic polymerseng
dc.subject.otherblock copolymerseng
dc.subject.othermembraneseng
dc.subject.otherself-assemblyeng
dc.subject.otherUV-cross-linkingeng
dc.titleNanoporous Block Copolymer Membranes with Enhanced Solvent Resistance Via UV-Mediated Cross-Linking Strategieseng
dc.typeArticleeng
dc.typeTexteng
tib.accessRightsopenAccesseng
wgl.contributorINMeng
wgl.subjectChemieeng
wgl.typeZeitschriftenartikeleng
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Nanoporous_Block_Copolymer.pdf
Size:
1.78 MB
Format:
Adobe Portable Document Format
Description:
Collections