Global observations of 2 day wave coupling to the diurnal tide in a high‐altitude forecast‐assimilation system

dc.bibliographicCitation.firstPage4135
dc.bibliographicCitation.issue8
dc.bibliographicCitation.lastPage4149
dc.bibliographicCitation.volume122
dc.contributor.authorLieberman, R.S.
dc.contributor.authorRiggin, D.M.
dc.contributor.authorNguyen, V.
dc.contributor.authorPalo, S.E.
dc.contributor.authorSiskind, D.E.
dc.contributor.authorMitchell, N.J.
dc.contributor.authorStober, G.
dc.contributor.authorWilhelm, S.
dc.contributor.authorLivesey, N.J.
dc.date.accessioned2022-12-20T13:23:14Z
dc.date.available2022-12-20T13:23:14Z
dc.date.issued2017-4-18
dc.description.abstractWe examine wave components in a high-altitude forecast-assimilation system that arise from nonlinear interaction between the diurnal tide and the westward traveling quasi 2 day wave. The process yields a westward traveling “sum” wave with zonal wave number 4 and a period of 16 h, and an eastward traveling “difference” wave with zonal wave number 2 and a period of 2 days. While the eastward 2 day wave has been reported in satellite temperatures, the westward 16 h wave lies outside the Nyquist limits of resolution of twice daily local time satellite sampling. Hourly output from a high-altitude forecast-assimilation model is used to diagnose the nonlinear quadriad. A steady state primitive equation model forced by tide-2 day wave advection is used to intepret the nonlinear wave products. The westward 16 h wave maximizes in the midlatitude winter mesosphere and behaves like an inertia-gravity wave. The nonlinearly generated component of the eastward 2 day wave maximizes at high latitudes in the lower thermosphere, and only weakly penetrates to low latitudes. The 16 h and the eastward 2 day waves are of comparable amplitude and alias to the same apparent frequency when viewed from a satellite perspective.eng
dc.description.versionpublishedVersioneng
dc.identifier.urihttps://oa.tib.eu/renate/handle/123456789/10692
dc.identifier.urihttp://dx.doi.org/10.34657/9728
dc.language.isoeng
dc.publisherHoboken, NJ : Wiley
dc.relation.doihttps://doi.org/10.1002/2016jd025144
dc.relation.essn2169-8996
dc.relation.ispartofseriesJGR : Atmospheres 122 (2017), Nr. 8
dc.rights.licenseCC BY-NC-ND 4.0 Unported
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subjectadvectioneng
dc.subjectaltitudeeng
dc.subjectdata assimilationeng
dc.subjectdiurnal variationeng
dc.subjectforecasting methodeng
dc.subjectglobal perspectiveeng
dc.subjectgravity waveeng
dc.subjectinertiaeng
dc.subjectmesosphereeng
dc.subjectnonlinear waveeng
dc.subjectobservational methodeng
dc.subjectsteady-state equilibriumeng
dc.subjectwesterlyeng
dc.subjectzonal windeng
dc.subject.ddc550
dc.titleGlobal observations of 2 day wave coupling to the diurnal tide in a high‐altitude forecast‐assimilation systemeng
dc.typearticleeng
dc.typeTexteng
dcterms.bibliographicCitation.journalTitleJGR : Atmospheres
tib.accessRightsopenAccesseng
wgl.contributorIAP
wgl.subjectGeowissenschaftenger
wgl.typeZeitschriftenartikelger
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Global_observations.pdf
Size:
4.71 MB
Format:
Adobe Portable Document Format
Description: