Dynamical low-rank approximations of solutions to the Hamilton--Jacobi--Bellman equation

Loading...
Thumbnail Image

Date

Volume

2896

Issue

Journal

Series Titel

WIAS Preprints

Book Title

Publisher

Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik

Abstract

We present a novel method to approximate optimal feedback laws for nonlinar optimal control basedon low-rank tensor train (TT) decompositions. The approach is based on the Dirac-Frenkel variationalprinciple with the modification that the optimisation uses an empirical risk. Compared to currentstate-of-the-art TT methods, our approach exhibits a greatly reduced computational burden whileachieving comparable results. A rigorous description of the numerical scheme and demonstrations ofits performance are provided.

Description

Keywords

License

This document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties.
Dieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden.