Moderate deviations for random walk in random scenery

Loading...
Thumbnail Image

Date

Volume

1167

Issue

Journal

Series Titel

WIAS Preprints

Book Title

Publisher

Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik

Link to publishers version

Abstract

We investigate random walks in independent, identically distributed random sceneries under the assumption that the scenery variables satisfy Cramér's condition. We prove moderate deviation principles in dimensions d ≥ 2, covering all those regimes where rate and speed do not depend on the actual distribution of the scenery. In the case d ≥ 4 we even obtain precise asymptotics for the annealed probability of a moderate deviation, extending a classical central limit theorem of Kesten and Spitzer. In d ≥ 3, an important ingredient in the proofs are new concentration inequalities for self-intersection local times of random walks, which are of independent interest, whilst in $ = 2 we use a recent moderate deviation result for self-intersection local times, which is due to Bass, Chen and Rosen.

Description

Keywords

License

This document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties.
Dieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden.