Moderate deviations for random walk in random scenery
Date
Volume
Issue
Journal
Series Titel
Book Title
Publisher
Link to publishers version
Abstract
We investigate random walks in independent, identically distributed random sceneries under the assumption that the scenery variables satisfy Cramér's condition. We prove moderate deviation principles in dimensions d ≥ 2, covering all those regimes where rate and speed do not depend on the actual distribution of the scenery. In the case d ≥ 4 we even obtain precise asymptotics for the annealed probability of a moderate deviation, extending a classical central limit theorem of Kesten and Spitzer. In d ≥ 3, an important ingredient in the proofs are new concentration inequalities for self-intersection local times of random walks, which are of independent interest, whilst in $ = 2 we use a recent moderate deviation result for self-intersection local times, which is due to Bass, Chen and Rosen.
Description
Keywords
Collections
License
Dieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden.