Statistical analysis of tipping pathways in agent-based models

Loading...
Thumbnail Image
Date
2021
Volume
230
Issue
16-17
Journal
European physical journal special topics
Series Titel
Book Title
Publisher
Berlin ; Heidelberg : Springer
Abstract

Agent-based models are a natural choice for modeling complex social systems. In such models simple stochastic interaction rules for a large population of individuals on the microscopic scale can lead to emergent dynamics on the macroscopic scale, for instance a sudden shift of majority opinion or behavior. Here we are introducing a methodology for studying noise-induced tipping between relevant subsets of the agent state space representing characteristic configurations. Due to a large number of interacting individuals, agent-based models are high-dimensional, though usually a lower-dimensional structure of the emerging collective behaviour exists. We therefore apply Diffusion Maps, a non-linear dimension reduction technique, to reveal the intrinsic low-dimensional structure. We characterize the tipping behaviour by means of Transition Path Theory, which helps gaining a statistical understanding of the tipping paths such as their distribution, flux and rate. By systematically studying two agent-based models that exhibit a multitude of tipping pathways and cascading effects, we illustrate the practicability of our approach.

Description
Keywords
Citation
Helfmann, L., Heitzig, J., Koltai, P., Kurths, J., & Schütte, C. (2021). Statistical analysis of tipping pathways in agent-based models (Berlin ; Heidelberg : Springer). Berlin ; Heidelberg : Springer. https://doi.org//10.1140/epjs/s11734-021-00191-0
Collections
License
CC BY 4.0 Unported