Traveling fronts in a reaction-diffusion equation with a memory term

dc.bibliographicCitation.seriesTitleWIAS Preprintseng
dc.bibliographicCitation.volume2836
dc.contributor.authorMielke, Alexander
dc.contributor.authorReichelt, Sina
dc.date.accessioned2022-07-05T14:10:47Z
dc.date.available2022-07-05T14:10:47Z
dc.date.issued2021
dc.description.abstractBased on a recent work on traveling waves in spatially nonlocal reaction-diffusion equations, we investigate the existence of traveling fronts in reaction-diffusion equations with a memory term. We will explain how such memory terms can arise from reduction of reaction-diffusion systems if the diffusion constants of the other species can be neglected. In particular, we show that two-scale homogenization of spatially periodic systems can induce spatially homogeneous systems with temporal memory. The existence of fronts is proved using comparison principles as well as a reformulation trick involving an auxiliary speed that allows us to transform memory terms into spatially nonlocal terms. Deriving explicit bounds and monotonicity properties of the wave speed of the arising traveling front, we are able to establish the existence of true traveling fronts for the original problem with memory. Our results are supplemented by numerical simulations.eng
dc.description.versionpublishedVersioneng
dc.identifier.urihttps://oa.tib.eu/renate/handle/123456789/9554
dc.identifier.urihttps://doi.org/10.34657/8592
dc.language.isoeng
dc.publisherBerlin : Weierstraß-Institut für Angewandte Analysis und Stochastik
dc.relation.doihttps://doi.org/10.20347/WIAS.PREPRINT.2836
dc.relation.hasversionhttps://doi.org/10.1007/s10884-022-10133-6
dc.relation.issn2198-5855
dc.rights.licenseThis document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties.eng
dc.rights.licenseDieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden.ger
dc.subject.ddc510
dc.subject.otherStrong comparison principleeng
dc.subject.otherFitzHugh--Nagumo equationeng
dc.subject.otherestimates for wave speedeng
dc.subject.otherexponentially decaying memory kernelseng
dc.subject.othertwo-scale homogenizationeng
dc.titleTraveling fronts in a reaction-diffusion equation with a memory termeng
dc.typeReporteng
dc.typeTexteng
dcterms.extent24 S.
tib.accessRightsopenAccess
wgl.contributorWIAS
wgl.subjectMathematik
wgl.typeReport / Forschungsbericht / Arbeitspapier
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
wias_preprints_2836.pdf
Size:
1.08 MB
Format:
Adobe Portable Document Format
Description: