Understanding Class Representations: An Intrinsic Evaluation of Zero-Shot Text Classification

dc.bibliographicCitation.bookTitleProceedings of the Workshop on Deep Learning for Knowledge Graphs (DL4KG 2021) co-located with the 20th International Semantic Web Conference (ISWC 2021)eng
dc.bibliographicCitation.firstPage8
dc.bibliographicCitation.journalTitleCEUR workshop proceedingseng
dc.bibliographicCitation.volume3404
dc.contributor.authorHoppe, Fabian
dc.contributor.authorDessì, Danilo
dc.contributor.authorSack, Harald
dc.contributor.editorAlam, Mehwish
dc.contributor.editorBuscaldi, Davide
dc.contributor.editorCochez, Michael
dc.contributor.editorOsborne, Francesco
dc.contributor.editorReforgiato Recupero, Diego
dc.contributor.editorSack, Harald
dc.date.accessioned2022-05-11T11:11:41Z
dc.date.available2022-05-11T11:11:41Z
dc.date.issued2021
dc.description.abstractFrequently, Text Classification is limited by insufficient training data. This problem is addressed by Zero-Shot Classification through the inclusion of external class definitions and then exploiting the relations between classes seen during training and unseen classes (Zero-shot). However, it requires a class embedding space capable of accurately representing the semantic relatedness between classes. This work defines an intrinsic evaluation based on greater-than constraints to provide a better understanding of this relatedness. The results imply that textual embeddings are able to capture more semantics than Knowledge Graph embeddings, but combining both modalities yields the best performance.eng
dc.description.versionpublishedVersioneng
dc.identifier.urihttps://oa.tib.eu/renate/handle/123456789/8961
dc.identifier.urihttps://doi.org/10.34657/7999
dc.language.isoeng
dc.publisherAachen, Germany : RWTH Aachen
dc.relation.essn1613-0073
dc.relation.urihttp://ceur-ws.org/Vol-3034/paper8.pdf
dc.rights.licenseCC BY 4.0 Unported
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.subject.ddc004eng
dc.subject.gndKonferenzschriftger
dc.subject.otherZero-Shot Learningeng
dc.subject.otherText Classificationeng
dc.subject.otherClass Representationeng
dc.subject.otherEmbedding Modeleng
dc.subject.otherIntrinsic Evaluationeng
dc.titleUnderstanding Class Representations: An Intrinsic Evaluation of Zero-Shot Text Classificationeng
dc.typeBookParteng
dc.typeTexteng
dcterms.eventWorkshop on Deep Learning for Knowledge Graphs (DL4KG 2021) co-located with the 20th International Semantic Web Conference (ISWC 2021), Virtual Conference, online, October 25, 2021
tib.accessRightsopenAccess
wgl.contributorFIZ KA
wgl.subjectInformatik
wgl.typeBuchkapitel / Sammelwerksbeitrag
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
paper8.pdf
Size:
554.54 KB
Format:
Adobe Portable Document Format
Description:
Collections