Assessment of lidar depolarization uncertainty by means of a polarimetric lidar simulator

dc.bibliographicCitation.firstPage4935eng
dc.bibliographicCitation.issue10eng
dc.bibliographicCitation.lastPage4953eng
dc.bibliographicCitation.volume9
dc.contributor.authorBravo-Aranda, Juan Antonio
dc.contributor.authorBelegante, Livio
dc.contributor.authorFreudenthaler, Volker
dc.contributor.authorAlados-Arboledas, Lucas
dc.contributor.authorNicolae, Doina
dc.contributor.authorGranados-Muñoz, María José
dc.contributor.authorGuerrero-Rascado, Juan Luis
dc.contributor.authorAmodeo, Aldo
dc.contributor.authorD'Amico, Giusseppe
dc.contributor.authorEngelmann, Ronny
dc.contributor.authorPappalardo, Gelsomina
dc.contributor.authorKokkalis, Panos
dc.contributor.authorMamouri, Rodanthy
dc.contributor.authorPapayannis, Alex
dc.contributor.authorNavas-Guzmán, Francisco
dc.contributor.authorOlmo, Francisco José
dc.contributor.authorWandinger, Ulla
dc.contributor.authorAmato, Francesco
dc.contributor.authorHaeffelin, Martial
dc.date.accessioned2017-12-09T00:19:21Z
dc.date.available2019-06-26T17:19:55Z
dc.date.issued2016
dc.description.abstractLidar depolarization measurements distinguish between spherical and non-spherical aerosol particles based on the change of the polarization state between the emitted and received signal. The particle shape information in combination with other aerosol optical properties allows the characterization of different aerosol types and the retrieval of aerosol particle microphysical properties. Regarding the microphysical inversions, the lidar depolarization technique is becoming a key method since particle shape information can be used by algorithms based on spheres and spheroids, optimizing the retrieval procedure. Thus, the identification of the depolarization error sources and the quantification of their effects are crucial. This work presents a new tool to assess the systematic error of the volume linear depolarization ratio (δ), combining the Stokes–Müller formalism and the complete sampling of the error space using the lidar model presented in Freudenthaler (2016a). This tool is applied to a synthetic lidar system and to several EARLINET lidars with depolarization capabilities at 355 or 532 nm. The lidar systems show relative errors of δ larger than 100 % for δ values around molecular linear depolarization ratios (∼ 0.004 and up to ∼  10 % for δ = 0.45). However, one system shows only relative errors of 25 and 0.22 % for δ = 0.004 and δ = 0.45, respectively, and gives an example of how a proper identification and reduction of the main error sources can drastically reduce the systematic errors of δ. In this regard, we provide some indications of how to reduce the systematic errors.eng
dc.description.versionpublishedVersioneng
dc.formatapplication/pdf
dc.identifier.urihttps://doi.org/10.34657/795
dc.identifier.urihttps://oa.tib.eu/renate/handle/123456789/725
dc.language.isoengeng
dc.publisherMünchen : European Geopyhsical Unioneng
dc.relation.doihttps://doi.org/10.5194/amt-9-4935-2016
dc.relation.ispartofseriesAtmospheric Measurement Techniques, Volume 9, Issue 10, Page 4935-4953eng
dc.rights.licenseCC BY 3.0 Unportedeng
dc.rights.urihttps://creativecommons.org/licenses/by/3.0/eng
dc.subjectaerosoleng
dc.subjectalgorithmeng
dc.subjecterror analysiseng
dc.subjecterror correctioneng
dc.subjectlidareng
dc.subjectparticulate mattereng
dc.subjectpolarizationeng
dc.subjectshape analysiseng
dc.subject.ddc550eng
dc.titleAssessment of lidar depolarization uncertainty by means of a polarimetric lidar simulatoreng
dc.typearticleeng
dc.typeTexteng
dcterms.bibliographicCitation.journalTitleAtmospheric Measurement Techniqueseng
tib.accessRightsopenAccesseng
wgl.contributorTROPOSeng
wgl.subjectGeowissenschafteneng
wgl.typeZeitschriftenartikeleng
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
amt-9-4935-2016.pdf
Size:
1.8 MB
Format:
Adobe Portable Document Format
Description: