High order discretization methods for spatial-dependent epidemic models
dc.bibliographicCitation.seriesTitle | WIAS Preprints | eng |
dc.bibliographicCitation.volume | 2805 | |
dc.contributor.author | Takács, Bálint | |
dc.contributor.author | Hadjimichael, Yiannis | |
dc.date.accessioned | 2022-07-05T14:00:01Z | |
dc.date.available | 2022-07-05T14:00:01Z | |
dc.date.issued | 2021 | |
dc.description.abstract | In this paper, an SIR model with spatial dependence is studied and results regarding its stability and numerical approximation are presented. We consider a generalization of the original Kermack and McKendrick model in which the size of the populations differs in space. The use of local spatial dependence yields a system of integro-differential equations. The uniqueness and qualitative properties of the continuous model are analyzed. Furthermore, different choices of spatial and temporal discretizations are employed, and step-size restrictions for population conservation, positivity, and monotonicity preservation of the discrete model are investigated. We provide sufficient conditions under which high order numerical schemes preserve the discrete properties of the model. Computational experiments verify the convergence and accuracy of the numerical methods. | eng |
dc.description.version | publishedVersion | eng |
dc.identifier.uri | https://oa.tib.eu/renate/handle/123456789/9523 | |
dc.identifier.uri | https://doi.org/10.34657/8561 | |
dc.language.iso | eng | |
dc.publisher | Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik | |
dc.relation.doi | https://doi.org/10.20347/WIAS.PREPRINT.2805 | |
dc.relation.hasversion | https://doi.org/10.1016/j.matcom.2022.02.021 | |
dc.relation.issn | 2198-5855 | |
dc.rights.license | This document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties. | eng |
dc.rights.license | Dieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden. | ger |
dc.subject.ddc | 510 | |
dc.subject.other | Epidemic models | eng |
dc.subject.other | SIR model | eng |
dc.subject.other | integro-differential equations | eng |
dc.subject.other | strong stability preservation | eng |
dc.title | High order discretization methods for spatial-dependent epidemic models | eng |
dc.type | Report | eng |
dc.type | Text | eng |
dcterms.extent | 31 S. | |
tib.accessRights | openAccess | |
wgl.contributor | WIAS | |
wgl.subject | Mathematik | |
wgl.type | Report / Forschungsbericht / Arbeitspapier |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- wias_preprints_2805.pdf
- Size:
- 3.25 MB
- Format:
- Adobe Portable Document Format
- Description: