High order discretization methods for spatial-dependent epidemic models

dc.bibliographicCitation.seriesTitleWIAS Preprintseng
dc.bibliographicCitation.volume2805
dc.contributor.authorTakács, Bálint
dc.contributor.authorHadjimichael, Yiannis
dc.date.accessioned2022-07-05T14:00:01Z
dc.date.available2022-07-05T14:00:01Z
dc.date.issued2021
dc.description.abstractIn this paper, an SIR model with spatial dependence is studied and results regarding its stability and numerical approximation are presented. We consider a generalization of the original Kermack and McKendrick model in which the size of the populations differs in space. The use of local spatial dependence yields a system of integro-differential equations. The uniqueness and qualitative properties of the continuous model are analyzed. Furthermore, different choices of spatial and temporal discretizations are employed, and step-size restrictions for population conservation, positivity, and monotonicity preservation of the discrete model are investigated. We provide sufficient conditions under which high order numerical schemes preserve the discrete properties of the model. Computational experiments verify the convergence and accuracy of the numerical methods.eng
dc.description.versionpublishedVersioneng
dc.identifier.urihttps://oa.tib.eu/renate/handle/123456789/9523
dc.identifier.urihttps://doi.org/10.34657/8561
dc.language.isoeng
dc.publisherBerlin : Weierstraß-Institut für Angewandte Analysis und Stochastik
dc.relation.doihttps://doi.org/10.20347/WIAS.PREPRINT.2805
dc.relation.hasversionhttps://doi.org/10.1016/j.matcom.2022.02.021
dc.relation.issn2198-5855
dc.rights.licenseThis document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties.eng
dc.rights.licenseDieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden.ger
dc.subject.ddc510
dc.subject.otherEpidemic modelseng
dc.subject.otherSIR modeleng
dc.subject.otherintegro-differential equationseng
dc.subject.otherstrong stability preservationeng
dc.titleHigh order discretization methods for spatial-dependent epidemic modelseng
dc.typeReporteng
dc.typeTexteng
dcterms.extent31 S.
tib.accessRightsopenAccess
wgl.contributorWIAS
wgl.subjectMathematik
wgl.typeReport / Forschungsbericht / Arbeitspapier
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
wias_preprints_2805.pdf
Size:
3.25 MB
Format:
Adobe Portable Document Format
Description: