Investigating the electrochemical stability of Li7La3Zr2O12 solid electrolytes using field stress experiments

dc.bibliographicCitation.firstPage15226eng
dc.bibliographicCitation.issue27eng
dc.bibliographicCitation.lastPage15237eng
dc.bibliographicCitation.volume9eng
dc.contributor.authorSmetaczek, Stefan
dc.contributor.authorPycha, Eva
dc.contributor.authorRing, Joseph
dc.contributor.authorSiebenhofer, Matthäus
dc.contributor.authorGanschow, Steffen
dc.contributor.authorBerendts, Stefan
dc.contributor.authorNenning, Andreas
dc.contributor.authorKubicek, Markus
dc.contributor.authorRettenwander, Daniel
dc.contributor.authorLimbeck, Andreas
dc.contributor.authorFleig, Jürgen
dc.date.accessioned2022-03-22T10:53:02Z
dc.date.available2022-03-22T10:53:02Z
dc.date.issued2021
dc.description.abstractCubic Li7La3Zr2O12 (LLZO) garnets are among the most promising solid electrolytes for solid-state batteries with the potential to exceed conventional battery concepts in terms of energy density and safety. The electrochemical stability of LLZO is crucial for its application, however, controversial reports in the literature show that it is still an unsettled matter. Here, we investigate the electrochemical stability of LLZO single crystals by applying electric field stress via macro- and microscopic ionically blocking Au electrodes in ambient air. Induced material changes are subsequently probed using various locally resolved analysis techniques, including microelectrode electrochemical impedance spectroscopy (EIS), laser induced breakdown spectroscopy (LIBS), laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS), and microfocus X-ray diffraction (XRD). Our experiments indicate that LLZO decomposes at 4.1–4.3 V vs. Li+/Li, leading to the formation of Li-poor phases like La2Zr2O7 beneath the positively polarized electrode. The reaction is still on-going even after several days of polarization, indicating that no blocking interfacial layer is formed. The decomposition can be observed at elevated as well as room temperature and suggests that LLZO is truly not compatible with high voltage cathode materials.eng
dc.description.versionpublishedVersioneng
dc.identifier.urihttps://oa.tib.eu/renate/handle/123456789/8316
dc.identifier.urihttps://doi.org/10.34657/7354
dc.language.isoengeng
dc.publisherLondon [u.a.] : RSCeng
dc.relation.doihttps://doi.org/10.1039/d1ta02983e
dc.relation.essn2050-7496
dc.relation.ispartofseriesJournal of materials chemistry : A, Materials for energy and sustainability 9 (2021), Nr. 27eng
dc.rights.licenseCC BY 3.0 Unportedeng
dc.rights.urihttps://creativecommons.org/licenses/by/3.0/eng
dc.subjectAtomic emission spectroscopyeng
dc.subjectCathodeseng
dc.subjectElectric fieldseng
dc.subjectElectrochemical electrodeseng
dc.subjectElectrochemical impedance spectroscopyeng
dc.subjectGold metallographyeng
dc.subjectInductively coupled plasma mass spectrometryeng
dc.subjectLaser ablationeng
dc.subjectMicroelectrodeseng
dc.subjectSolid state deviceseng
dc.subjectSolid-State Batterieseng
dc.subjectAnalysis techniqueseng
dc.subjectConventional batterieseng
dc.subjectElectrochemical stabilitieseng
dc.subjectHigh voltage cathodeeng
dc.subjectInterfacial layereng
dc.subjectLaser ablation inductively coupled plasma mass spectrometries (LA ICP MS)eng
dc.subjectLaserinduced breakdown spectroscopy (LIBS)eng
dc.subjectPolarized electrodeseng
dc.subjectSolid electrolyteseng
dc.subject.ddc540eng
dc.subject.ddc530eng
dc.titleInvestigating the electrochemical stability of Li7La3Zr2O12 solid electrolytes using field stress experimentseng
dc.typearticleeng
dc.typeTexteng
dcterms.bibliographicCitation.journalTitleJournal of materials chemistry : A, Materials for energy and sustainabilityeng
tib.accessRightsopenAccesseng
wgl.contributorIKZeng
wgl.subjectChemieeng
wgl.typeZeitschriftenartikeleng
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Investigating_the_electrochemical_stability.pdf
Size:
1.36 MB
Format:
Adobe Portable Document Format
Description:
Collections