Enhanced electrochemical energy storage by nanoscopic decoration of endohedral and exohedral carbon with vanadium oxide via atomic layer deposition

dc.bibliographicCitation.firstPage2808
dc.bibliographicCitation.issue8eng
dc.bibliographicCitation.journalTitleChemistry of Materialseng
dc.bibliographicCitation.lastPage2813
dc.bibliographicCitation.volume28
dc.contributor.authorFleischmann, Simon
dc.contributor.authorJäckel, Nicolas
dc.contributor.authorZeiger, Marco
dc.contributor.authorKrüner, Benjamin
dc.contributor.authorGrobelsek, Ingrid
dc.contributor.authorFormanek, Petr
dc.contributor.authorChoudhury, Soumyadip
dc.contributor.authorWeingarth, Daniel
dc.contributor.authorPresser, Volker
dc.date.accessioned2018-11-27T13:55:23Z
dc.date.available2019-06-28T13:59:05Z
dc.date.issued2016
dc.description.abstractAtomic layer deposition (ALD) is a facile process to decorate carbon surfaces with redox-active nanolayers. This is a particularly attractive route to obtain hybrid electrode materials for high performance electrochemical energy storage applications. Using activated carbon and carbon onions as representatives of substrate materials with large internal or external surface area, respectively, we have studied the enhanced energy storage capacity of vanadium oxide coatings. While the internal porosity of activated carbon readily becomes blocked by obstructing nanopores, carbon onions enable the continued deposition of vanadia within their large interparticle voids. Electrochemical benchmarking in lithium perchlorate in acetonitrile (1 M LiClO4) showed a maximum capacity of 122 mAh/g when using vanadia coated activated carbon and 129 mAh/g for vanadia coated carbon onions. There is an optimum amount of vanadia between 50 and 65 wt % for both substrates that results in an ideal balance between redox-activity and electrical conductivity of the hybrid electrode. Assembling asymmetric (charge balanced) full-cells, a maximum specific energy of 38 Wh/kg and 29 Wh/kg was found for carbon onions and activated carbon, respectively. The stability of both systems is promising, with a capacity retention of ∼85–91% after 7000 cycles for full-cell measurements.eng
dc.description.versionpublishedVersioneng
dc.formatapplication/pdf
dc.identifier.urihttps://doi.org/10.34657/523
dc.identifier.urihttps://oa.tib.eu/renate/handle/123456789/4637
dc.language.isoengeng
dc.publisherWashington D.C. : American Chemical Societyeng
dc.relation.doihttps://doi.org/10.1021/acs.chemmater.6b00738
dc.rights.licenseThis document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties.eng
dc.rights.licenseDieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden.ger
dc.subject.ddc540eng
dc.titleEnhanced electrochemical energy storage by nanoscopic decoration of endohedral and exohedral carbon with vanadium oxide via atomic layer depositioneng
dc.typeArticleeng
dc.typeTexteng
tib.accessRightsopenAccesseng
wgl.contributorINMeng
wgl.subjectChemieeng
wgl.typeZeitschriftenartikeleng
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
inm2016037.pdf
Size:
6.38 MB
Format:
Adobe Portable Document Format
Description:
Collections