Computational error estimates for Born-Oppenheimer molecular dynamics with nearly crossing potential surfaces

No Thumbnail Available
Date
2013
Volume
Issue
Journal
Series Titel
Book Title
Publisher
Cambridge : arXiv
Link to publishers version
Abstract

The difference of the values of observables for the time-independent Schroedinger equation, with matrix valued potentials, and the values of observables for ab initio Born-Oppenheimer molecular dynamics, of the ground state, depends on the probability to be in excited states and the electron/nuclei mass ratio. The paper first proves an error estimate (depending on the electron/nuclei mass ratio and the probability to be in excited states) for this difference of microcanonical observables, assuming that molecular dynamics space-time averages converge, with a rate related to the maximal Lyapunov exponent. The error estimate is uniform in the number of particles and the analysis does not assume a uniform lower bound on the spectral gap of the electron operator and consequently the probability to be in excited states can be large. A numerical method to determine the probability to be in excited states is then presented, based on Ehrenfest molecular dynamics and stability analysis of a perturbed eigenvalue problem.

Description
Keywords
Collections
License
This document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties.
Dieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden.