Few-cycle laser driven reaction nanoscopy on aerosolized silica nanoparticles

dc.bibliographicCitation.firstPage4655eng
dc.bibliographicCitation.journalTitleNature Communicationseng
dc.bibliographicCitation.volume10eng
dc.contributor.authorRupp, Philipp
dc.contributor.authorBurger, Christian
dc.contributor.authorKling, Nora G
dc.contributor.authorKübel, Matthias
dc.contributor.authorMitra, Sambit
dc.contributor.authorRosenberger, Philipp
dc.contributor.authorWeatherby, Thomas
dc.contributor.authorSaito, Nariyuki
dc.contributor.authorItatani, Jiro
dc.contributor.authorAlnaser, Ali S.
dc.contributor.authorRaschke, Markus B.
dc.contributor.authorRühl, Eckart
dc.contributor.authorSchlander, Annika
dc.contributor.authorGallei, Markus
dc.contributor.authorSeiffert, Lennart
dc.contributor.authorFennel, Thomas
dc.contributor.authorBergues, Boris
dc.contributor.authorKling, Matthias F.
dc.date.accessioned2022-11-18T08:45:55Z
dc.date.available2022-11-18T08:45:55Z
dc.date.issued2019
dc.description.abstractNanoparticles offer unique properties as photocatalysts with large surface areas. Under irradiation with light, the associated near-fields can induce, enhance, and control molecular adsorbate reactions on the nanoscale. So far, however, there is no simple method available to spatially resolve the near-field induced reaction yield on the surface of nanoparticles. Here we close this gap by introducing reaction nanoscopy based on three-dimensional momentum-resolved photoionization. The technique is demonstrated for the spatially selective proton generation in few-cycle laser-induced dissociative ionization of ethanol and water on SiO2 nanoparticles, resolving a pronounced variation across the particle surface. The results are modeled and reproduced qualitatively by electrostatic and quasi-classical mean-field Mie Monte-Carlo (M3C) calculations. Reaction nanoscopy is suited for a wide range of isolated nanosystems and can provide spatially resolved ultrafast reaction dynamics on nanoparticles, clusters, and droplets.eng
dc.description.versionpublishedVersioneng
dc.identifier.urihttps://oa.tib.eu/renate/handle/123456789/10368
dc.identifier.urihttp://dx.doi.org/10.34657/9404
dc.language.isoengeng
dc.publisher[London] : Nature Publishing Group UKeng
dc.relation.doihttps://doi.org/10.1038/s41467-019-12580-0
dc.relation.essn2041-1723
dc.rights.licenseCC BY 4.0 Unportedeng
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/eng
dc.subject.ddc500eng
dc.subject.otheranalytic methodeng
dc.subject.otherdissociationeng
dc.subject.otherionizationeng
dc.subject.otherlaser driven reaction nanoscopyeng
dc.subject.otherMonte Carlo methodeng
dc.subject.othernanotechnologyeng
dc.subject.otherphotochemistryeng
dc.subject.otherqualitative analysiseng
dc.subject.otherstatic electricityeng
dc.subject.othersurface propertyeng
dc.subject.otheralcoholeng
dc.subject.otherprotoneng
dc.subject.othersilica nanoparticleeng
dc.subject.otherwatereng
dc.titleFew-cycle laser driven reaction nanoscopy on aerosolized silica nanoparticleseng
dc.typeArticleeng
dc.typeTexteng
tib.accessRightsopenAccesseng
wgl.contributorMBIeng
wgl.subjectPhysikeng
wgl.typeZeitschriftenartikeleng
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Few-cycle_laser_driven_reaction_nanoscopy.pdf
Size:
1.92 MB
Format:
Adobe Portable Document Format
Description:
Collections