Raman gas self-organizing into deep nano-trap lattice

dc.bibliographicCitation.firstPage12779eng
dc.bibliographicCitation.issue1eng
dc.bibliographicCitation.journalTitleNature Communicationseng
dc.bibliographicCitation.volume7eng
dc.contributor.authorAlharbi, M.
dc.contributor.authorHusakou, A.
dc.contributor.authorChafer, M.
dc.contributor.authorDebord, B.
dc.contributor.authorGérôme, F.
dc.contributor.authorBenabid, F.
dc.date.accessioned2022-08-10T12:30:18Z
dc.date.available2022-08-10T12:30:18Z
dc.date.issued2016
dc.description.abstractTrapping or cooling molecules has rallied a long-standing effort for its impact in exploring new frontiers in physics and in finding new phase of matter for quantum technologies. Here we demonstrate a system for light-trapping molecules and stimulated Raman scattering based on optically self-nanostructured molecular hydrogen in hollow-core photonic crystal fibre. A lattice is formed by a periodic and ultra-deep potential caused by a spatially modulated Raman saturation, where Raman-active molecules are strongly localized in a one-dimensional array of nanometre-wide sections. Only these trapped molecules participate in stimulated Raman scattering, generating high-power forward and backward Stokes continuous-wave laser radiation in the Lamb-Dicke regime with sub-Doppler emission spectrum. The spectrum exhibits a central line with a sub-recoil linewidth as low as ∼14 kHz, more than five orders of magnitude narrower than conventional-Raman pressure-broadened linewidth, and sidebands comprising Mollow triplet, motional sidebands and four-wave mixing.eng
dc.description.versionpublishedVersioneng
dc.identifier.urihttps://oa.tib.eu/renate/handle/123456789/9975
dc.identifier.urihttp://dx.doi.org/10.34657/9013
dc.language.isoengeng
dc.publisher[London] : Nature Publishing Group UKeng
dc.relation.doihttps://doi.org/10.1038/ncomms12779
dc.relation.essn2041-1723
dc.rights.licenseCC BY 4.0 Unportedeng
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/eng
dc.subject.ddc500eng
dc.subject.otherhydrogeneng
dc.subject.othercrystal propertyeng
dc.subject.otherequipmenteng
dc.subject.otherphysical scienceeng
dc.subject.otherquantum mechanicseng
dc.subject.otherscatteringeng
dc.subject.othershortwave radiationeng
dc.subject.othercontinuous wave lasereng
dc.subject.othercrystal structureeng
dc.subject.othergaseng
dc.subject.othermolecular dynamicseng
dc.subject.othermotioneng
dc.subject.otherphotoneng
dc.subject.otherRaman spectrometryeng
dc.titleRaman gas self-organizing into deep nano-trap latticeeng
dc.typeArticleeng
dc.typeTexteng
tib.accessRightsopenAccesseng
wgl.contributorMBIeng
wgl.subjectPhysikeng
wgl.typeZeitschriftenartikeleng
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Raman_gas_self-organizing.pdf
Size:
1.35 MB
Format:
Adobe Portable Document Format
Description:
Collections