Origin of Terahertz Soft-Mode Nonlinearities in Ferroelectric Perovskites

dc.bibliographicCitation.firstPage02102eng
dc.bibliographicCitation.issue2eng
dc.bibliographicCitation.journalTitlePhysical review : Xeng
dc.bibliographicCitation.volume11eng
dc.contributor.authorPal, Shovon
dc.contributor.authorStrkalj, Nives
dc.contributor.authorYang, Chia-Jung
dc.contributor.authorWeber, Mads C.
dc.contributor.authorTrassin, Morgan
dc.contributor.authorWoerner, Michael
dc.contributor.authorFiebig, Manfred
dc.date.accessioned2022-04-06T12:11:51Z
dc.date.available2022-04-06T12:11:51Z
dc.date.issued2021
dc.description.abstractSoft modes are intimately linked to structural instabilities and are key for the understanding of phase transitions. The soft modes in ferroelectrics, for example, map directly the polar order parameter of a crystal lattice. Driving these modes into the nonlinear, frequency-changing regime with intense terahertz (THz) light fields is an efficient way to alter the lattice and, with it, the physical properties. However, recent studies show that the THz electric-field amplitudes triggering a nonlinear soft-mode response are surprisingly low, which raises the question on the microscopic picture behind the origin of this nonlinear response. Here, we use linear and two-dimensional terahertz (2D THz) spectroscopy to unravel the origin of the soft-mode nonlinearities in a strain-engineered epitaxial ferroelectric SrTiO3 thin film. We find that the linear dielectric function of this mode is quantitatively incompatible with pure ionic or pure electronic motions. Instead, 2D THz spectroscopy reveals a pronounced coupling of electronic and ionic-displacement dipoles. Hence, the soft mode is a hybrid mode of lattice (ionic) motions and electronic interband transitions. We confirm this conclusion with model calculations based on a simplified pseudopotential concept of the electronic band structure. It reveals that the entire THz nonlinearity is caused by the off-resonant nonlinear response of the electronic interband transitions of the lattice-electronic hybrid mode. With this work, we provide fundamental insights into the microscopic processes that govern the softness that any material assumes near a ferroic phase transition. This knowledge will allow us to gain an efficient all-optical control over the associated large nonlinear effects.eng
dc.description.versionpublishedVersioneng
dc.identifier.urihttps://oa.tib.eu/renate/handle/123456789/8601
dc.identifier.urihttps://doi.org/10.34657/7639
dc.language.isoengeng
dc.publisherCollege Park, Md. : APSeng
dc.relation.doihttps://doi.org/10.1103/PhysRevX.11.021023
dc.relation.essn2160-3308
dc.rights.licenseCC BY 4.0 Unportedeng
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/eng
dc.subject.ddc530eng
dc.subject.otherElectric field effectseng
dc.subject.otherFerroelectric materialseng
dc.subject.otherFerroelectricityeng
dc.subject.otherPerovskiteeng
dc.subject.otherStrontium titanateseng
dc.subject.otherTerahertz spectroscopyeng
dc.subject.otherElectric-field amplitudeeng
dc.subject.otherElectronic band structureeng
dc.subject.otherEpitaxial ferroelectriceng
dc.subject.otherFerroelectric perovskiteseng
dc.subject.otherInter-band transitioneng
dc.subject.otherLinear dielectric functioneng
dc.subject.otherMicroscopic processeng
dc.subject.otherStructural instabilityeng
dc.subject.otherNonlinear opticseng
dc.titleOrigin of Terahertz Soft-Mode Nonlinearities in Ferroelectric Perovskiteseng
dc.typeArticleeng
dc.typeTexteng
tib.accessRightsopenAccesseng
wgl.contributorMBIeng
wgl.subjectPhysikeng
wgl.typeZeitschriftenartikeleng
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Origin_of_Terahertz_Soft-Mode_Nonlinearities.pdf
Size:
2.52 MB
Format:
Adobe Portable Document Format
Description:
Collections