Low-rank Wasserstein polynomial chaos expansions in the framework of optimal transport

dc.bibliographicCitation.seriesTitleWIAS Preprintseng
dc.bibliographicCitation.volume2927
dc.contributor.authorGruhlke, Robert
dc.contributor.authorEigel, Martin
dc.date.accessioned2022-07-08T13:04:39Z
dc.date.available2022-07-08T13:04:39Z
dc.date.issued2022
dc.description.abstractA unsupervised learning approach for the computation of an explicit functional representation of a random vector Y is presented, which only relies on a finite set of samples with unknown distribution. Motivated by recent advances with computational optimal transport for estimating Wasserstein distances, we develop a new Wasserstein multi-element polynomial chaos expansion (WPCE). It relies on the minimization of a regularized empirical Wasserstein metric known as debiased Sinkhorn divergence. As a requirement for an efficient polynomial basis expansion, a suitable (minimal) stochastic coordinate system X has to be determined with the aim to identify ideally independent random variables. This approach generalizes representations through diffeomorphic transport maps to the case of non-continuous and non-injective model classes M with different input and output dimension, yielding the relation Y=M(X) in distribution. Moreover, since the used PCE grows exponentially in the number of random coordinates of X, we introduce an appropriate low-rank format given as stacks of tensor trains, which alleviates the curse of dimensionality, leading to only linear dependence on the input dimension. By the choice of the model class M and the smooth loss function, higher order optimization schemes become possible. It is shown that the relaxation to a discontinuous model class is necessary to explain multimodal distributions. Moreover, the proposed framework is applied to a numerical upscaling task, considering a computationally challenging microscopic random non-periodic composite material. This leads to tractable effective macroscopic random field in adopted stochastic coordinates.eng
dc.description.versionpublishedVersioneng
dc.identifier.urihttps://oa.tib.eu/renate/handle/123456789/9685
dc.identifier.urihttps://doi.org/10.34657/8723
dc.language.isoeng
dc.publisherBerlin : Weierstraß-Institut für Angewandte Analysis und Stochastik
dc.relation.doihttps://doi.org/10.20347/WIAS.PREPRINT.2927
dc.relation.issn2198-5855
dc.rights.licenseThis document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties.eng
dc.rights.licenseDieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden.ger
dc.subject.ddc510
dc.subject.otherTensor train formateng
dc.subject.otherWasserstein metriceng
dc.subject.otherpolynomial chaos expansioneng
dc.subject.otheralternating least squareseng
dc.subject.othernumerical upscalingeng
dc.subject.othertensor chaineng
dc.subject.otherSinkhorn divergenceeng
dc.subject.otheroptimal transporteng
dc.subject.othermultimodal distributioneng
dc.titleLow-rank Wasserstein polynomial chaos expansions in the framework of optimal transporteng
dc.typeReporteng
dc.typeTexteng
dcterms.extent35 S.
tib.accessRightsopenAccess
wgl.contributorWIAS
wgl.subjectMathematik
wgl.typeReport / Forschungsbericht / Arbeitspapier
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
wias_preprints_2927.pdf
Size:
10.17 MB
Format:
Adobe Portable Document Format
Description: