Stamping Fabrication of Flexible Planar Micro‐Supercapacitors Using Porous Graphene Inks

dc.bibliographicCitation.firstPage2001561eng
dc.bibliographicCitation.issue19eng
dc.bibliographicCitation.volume7eng
dc.contributor.authorLi, Fei
dc.contributor.authorQu, Jiang
dc.contributor.authorLi, Yang
dc.contributor.authorWang, Jinhui
dc.contributor.authorZhu, Minshen
dc.contributor.authorLiu, Lixiang
dc.contributor.authorGe, Jin
dc.contributor.authorDuan, Shengkai
dc.contributor.authorLi, Tianming
dc.contributor.authorBandari, Vineeth Kumar
dc.contributor.authorHuang, Ming
dc.contributor.authorZhu, Feng
dc.contributor.authorSchmidt, Oliver G.
dc.date.accessioned2020-08-24T12:05:53Z
dc.date.available2020-08-24T12:05:53Z
dc.date.issued2020
dc.description.abstractHigh performance, flexibility, safety, and robust integration for micro‐supercapacitors (MSCs) are of immense interest for the urgent demand for miniaturized, smart energy‐storage devices. However, repetitive photolithography processes in the fabrication of on‐chip electronic components including various photoresists, masks, and toxic etchants are often not well‐suited for industrial production. Here, a cost‐effective stamping strategy is developed for scalable and rapid preparation of graphene‐based planar MSCs. Combining stamps with desired shapes and highly conductive graphene inks, flexible MSCs with controlled structures are prepared on arbitrary substrates without any metal current collectors, additives, and polymer binders. The interdigitated MSC exhibits high areal capacitance up to 21.7 mF cm−2 at a current of 0.5 mA and a high power density of 6 mW cm−2 at an energy density of 5 µWh cm−2. Moreover, the MSCs show outstanding cycling performance and remarkable flexibility over 10 000 charge–discharge cycles and 300 bending cycles. In addition, the capacitance and output voltage of the MSCs are easily adjustable through interconnection with well‐defined arrangements. The efficient, rapid manufacturing of the graphene‐based interdigital MSCs with outstanding flexibility, shape diversity, and high areal capacitance shows great potential in wearable and portable electronics.eng
dc.description.versionpublishedVersioneng
dc.identifier.urihttps://doi.org/10.34657/4189
dc.identifier.urihttps://oa.tib.eu/renate/handle/123456789/5560
dc.language.isoengeng
dc.publisherHoboken : Wileyeng
dc.relation.doihttps://doi.org/10.1002/advs.202001561
dc.relation.ispartofseriesAdvanced Science 7 (2020), 19eng
dc.rights.licenseCC BY 4.0 Unportedeng
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/eng
dc.subjectareal energy densityeng
dc.subjectgraphene linkseng
dc.subjectmicro-supercapacitorseng
dc.subjectstampingeng
dc.subject.ddc620eng
dc.titleStamping Fabrication of Flexible Planar Micro‐Supercapacitors Using Porous Graphene Inksger
dc.typearticleeng
dc.typeTexteng
dcterms.bibliographicCitation.journalTitleAdvanced Scienceeng
tib.accessRightsopenAccesseng
wgl.contributorIFWDeng
wgl.subjectIngenieurwissenschafteneng
wgl.typeZeitschriftenartikeleng
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Li et al 2020, Stamping Fabrication of Flexible Planar Micro‐Supercapacitors Using Porous Graphene Inks.pdf
Size:
3.1 MB
Format:
Adobe Portable Document Format
Description: