Shape derivatives in Kondratiev spaces for conical diffraction

dc.bibliographicCitation.seriesTitleWIAS Preprintseng
dc.bibliographicCitation.volume1489
dc.contributor.authorKleemann, Norbert
dc.date.accessioned2016-03-24T17:38:35Z
dc.date.available2019-06-28T08:04:54Z
dc.date.issued2010
dc.description.abstractThis paper studies conical diffraction problems with non-smooth grating structures. We prove existence, uniqueness and regularity results for solutions in weighted Sobolev spaces of Kondratiev type. An a priori estimate, which follows from these results, is then used to prove shape differentiablility of solutions. Finally, a characterization of the shape derivative as a solution of a modified transmission problem is given.
dc.description.versionpublishedVersioneng
dc.formatapplication/pdf
dc.identifier.issn0946-8633
dc.identifier.urihttps://doi.org/10.34657/3138
dc.identifier.urihttps://oa.tib.eu/renate/handle/123456789/2244
dc.language.isoengeng
dc.publisherBerlin : Weierstraß-Institut für Angewandte Analysis und Stochastik
dc.relation.issn0946-8633eng
dc.rights.licenseDieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden.ger
dc.rights.licenseThis document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties.eng
dc.subject.ddc510
dc.subject.otherSystem of Helmholtz equationseng
dc.subject.othertransmission problemeng
dc.subject.othershape optimizationeng
dc.subject.othercorner singularitieseng
dc.subject.othera priori estimateeng
dc.titleShape derivatives in Kondratiev spaces for conical diffraction
dc.typeReporteng
dc.typeTexteng
tib.accessRightsopenAccesseng
wgl.contributorWIASeng
wgl.subjectMathematikeng
wgl.typeReport / Forschungsbericht / Arbeitspapiereng
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
664537510.pdf
Size:
385.66 KB
Format:
Adobe Portable Document Format
Description: