Stochastic control with rough paths

dc.contributor.authorDiehl, Joscha
dc.contributor.authorFriz, Peter
dc.contributor.authorGassiat, Paul
dc.date.accessioned2016-06-25T05:45:14Z
dc.date.available2019-06-28T08:19:31Z
dc.date.issued2013
dc.description.abstractWe study a class of controlled rough differential equations. It is shown that the value function satisfies a HJB type equation; we also establish a form of the Pontryagin maximum principle. Deterministic problems of this type arise in the duality theory for controlled diffusion processes and typically involve anticipating stochastic analysis. We propose a formulation based on rough paths and then obtain a generalization of Roger's duality formula [L. C. G. Rogers, 2007] from discrete to continuous time. We also make the link to old work of [Davis--Burstein, 1987].eng
dc.description.versionpublishedVersioneng
dc.identifier.urihttps://oa.tib.eu/renate/handle/123456789/3215
dc.language.isoengeng
dc.publisherCambridge : arXiveng
dc.relation.urihttp://arxiv.org/abs/1303.7160
dc.rights.licenseThis document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties.eng
dc.rights.licenseDieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden.ger
dc.subject.ddc510eng
dc.subject.otherStochastic controleng
dc.subject.otherDualityeng
dc.subject.otherRough pathseng
dc.titleStochastic control with rough pathseng
dc.typeReporteng
dc.typeTexteng
tib.accessRightsopenAccesseng
wgl.contributorWIASeng
wgl.subjectMathematikeng
wgl.typeReport / Forschungsbericht / Arbeitspapiereng
Files
Collections