This item is non-discoverable
Stochastic control with rough paths
dc.contributor.author | Diehl, Joscha | |
dc.contributor.author | Friz, Peter | |
dc.contributor.author | Gassiat, Paul | |
dc.date.accessioned | 2016-06-25T05:45:14Z | |
dc.date.available | 2019-06-28T08:19:31Z | |
dc.date.issued | 2013 | |
dc.description.abstract | We study a class of controlled rough differential equations. It is shown that the value function satisfies a HJB type equation; we also establish a form of the Pontryagin maximum principle. Deterministic problems of this type arise in the duality theory for controlled diffusion processes and typically involve anticipating stochastic analysis. We propose a formulation based on rough paths and then obtain a generalization of Roger's duality formula [L. C. G. Rogers, 2007] from discrete to continuous time. We also make the link to old work of [Davis--Burstein, 1987]. | eng |
dc.description.version | publishedVersion | eng |
dc.identifier.uri | https://oa.tib.eu/renate/handle/123456789/3215 | |
dc.language.iso | eng | eng |
dc.publisher | Cambridge : arXiv | eng |
dc.relation.uri | http://arxiv.org/abs/1303.7160 | |
dc.rights.license | This document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties. | eng |
dc.rights.license | Dieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden. | ger |
dc.subject.ddc | 510 | eng |
dc.subject.other | Stochastic control | eng |
dc.subject.other | Duality | eng |
dc.subject.other | Rough paths | eng |
dc.title | Stochastic control with rough paths | eng |
dc.type | Report | eng |
dc.type | Text | eng |
tib.accessRights | openAccess | eng |
wgl.contributor | WIAS | eng |
wgl.subject | Mathematik | eng |
wgl.type | Report / Forschungsbericht / Arbeitspapier | eng |