Effect of pore geometry on ultra-densified hydrogen in microporous carbons

dc.bibliographicCitation.firstPage968eng
dc.bibliographicCitation.journalTitleCarboneng
dc.bibliographicCitation.lastPage979eng
dc.bibliographicCitation.volume173eng
dc.contributor.authorTian, Mi
dc.contributor.authorLennox, Matthew J.
dc.contributor.authorO’Malley, Alexander J.
dc.contributor.authorPorter, Alexander J.
dc.contributor.authorKrüner, Benjamin
dc.contributor.authorRudić, Svemir
dc.contributor.authorMays, Timothy J.
dc.contributor.authorDüren, Tina
dc.contributor.authorPresser, Volker
dc.contributor.authorTerry, Lui R.
dc.contributor.authorRols, Stephane
dc.contributor.authorFang, Yanan
dc.contributor.authorDong, Zhili
dc.contributor.authorRochat, Sebastien
dc.contributor.authorTing, Valeska P.
dc.date.accessioned2021-07-05T12:55:15Z
dc.date.available2021-07-05T12:55:15Z
dc.date.issued2021
dc.description.abstractOur investigations into molecular hydrogen (H2) confined in microporous carbons with different pore geometries at 77 K have provided detailed information on effects of pore shape on densification of confined H2 at pressures up to 15 MPa. We selected three materials: a disordered, phenolic resin-based activated carbon, a graphitic carbon with slit-shaped pores (titanium carbide-derived carbon), and single-walled carbon nanotubes, all with comparable pore sizes of <1 nm. We show via a combination of in situ inelastic neutron scattering studies, high-pressure H2 adsorption measurements, and molecular modelling that both slit-shaped and cylindrical pores with a diameter of ∼0.7 nm lead to significant H2 densification compared to bulk hydrogen under the same conditions, with only subtle differences in hydrogen packing (and hence density) due to geometric constraints. While pore geometry may play some part in influencing the diffusion kinetics and packing arrangement of hydrogen molecules in pores, pore size remains the critical factor determining hydrogen storage capacities. This confirmation of the effects of pore geometry and pore size on the confinement of molecules is essential in understanding and guiding the development and scale-up of porous adsorbents that are tailored for maximising H2 storage capacities, in particular for sustainable energy applications.eng
dc.description.versionpublishedVersioneng
dc.identifier.urihttps://oa.tib.eu/renate/handle/123456789/6214
dc.identifier.urihttps://doi.org/10.34657/5261
dc.language.isoengeng
dc.publisherAmsterdam [u.a.] : Elsevier Scienceeng
dc.relation.doihttps://doi.org/10.1016/j.carbon.2020.11.063
dc.relation.essn0008-6223
dc.rights.licenseCC BY 4.0 Unportedeng
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/eng
dc.subject.ddc540eng
dc.subject.otherMicroporous carboneng
dc.subject.otherHydrogen storageeng
dc.subject.otherConfinementeng
dc.subject.otherHigh-pressure adsorptioneng
dc.subject.otherInelastic neutron scatteringeng
dc.subject.otherMolecular dynamic simulationeng
dc.titleEffect of pore geometry on ultra-densified hydrogen in microporous carbonseng
dc.typeArticleeng
dc.typeTexteng
tib.accessRightsopenAccesseng
wgl.contributorINMeng
wgl.subjectChemieeng
wgl.typeZeitschriftenartikeleng
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
1-s2.0-S0008622320311428-main.pdf
Size:
2.32 MB
Format:
Adobe Portable Document Format
Description:
Collections